Le théorème du coloriage des cartes (ex-conjecture de Heawood et conjecture des quatre couleurs)

Jean-Claude Fournier

Séminaire Bourbaki (1977-1978)

  • Volume: 20, page 41-64
  • ISSN: 0303-1179

How to cite

top

Fournier, Jean-Claude. "Le théorème du coloriage des cartes (ex-conjecture de Heawood et conjecture des quatre couleurs)." Séminaire Bourbaki 20 (1977-1978): 41-64. <http://eudml.org/doc/109927>.

@article{Fournier1977-1978,
author = {Fournier, Jean-Claude},
journal = {Séminaire Bourbaki},
keywords = {map coloring; closed surfaces; four colour conjecture; representation of graphs; Heawood conjecture; Hadwiger conjecture},
language = {fre},
pages = {41-64},
publisher = {Springer-Verlag},
title = {Le théorème du coloriage des cartes (ex-conjecture de Heawood et conjecture des quatre couleurs)},
url = {http://eudml.org/doc/109927},
volume = {20},
year = {1977-1978},
}

TY - JOUR
AU - Fournier, Jean-Claude
TI - Le théorème du coloriage des cartes (ex-conjecture de Heawood et conjecture des quatre couleurs)
JO - Séminaire Bourbaki
PY - 1977-1978
PB - Springer-Verlag
VL - 20
SP - 41
EP - 64
LA - fre
KW - map coloring; closed surfaces; four colour conjecture; representation of graphs; Heawood conjecture; Hadwiger conjecture
UR - http://eudml.org/doc/109927
ER -

References

top
  1. [1] A.B. Kempe - On the geographical problem of the four colours, Amer. J. Math., 2(1879), 193-200. MR1505218
  2. [2] P.J. Heawood - Map colour theorem, Quart. J. Math., 24(1890), 332-338. JFM22.0562.02
  3. [3] G.D. Birkhoff - The reducibility of maps, Amer. J. Math., 35(1913), 114-128. MR1506176JFM44.0568.01
  4. [4] H. Lebesgue - Quelques conséquences simples de la formule d'Euler, J. de Math., 9, Sér. 19 (1940), 27-43. Zbl0024.28701MR1903JFM66.0736.03
  5. [5] G.A. Dirac - Map-colour theorems, Can. J. Math., 4(1952), 480-490. Repris dans Short proof of a map-colour theorem, Can. J. Math., 9(1957), 225-226. Zbl0077.36802MR86306
  6. [6] G.A. Dirac - Map-colour theorems related to the Heawood colour formula, J. Lond. Math. Soc., 31(1956), 460-471 et 32(1957), 436-455. Zbl0071.17701MR81467
  7. [17] H. Hadwiger - Ungelöste Probleme, Element. Math., 13(1958), 127-128. 
  8. [8] K. Wagner - Bemerkungen zur Hadwigers Vermutung, Math. Annalen, 141(1960), 433- 451. Zbl0096.17904MR121309
  9. [9] J. W . T . Youngs - Minimal imbeddings and the genus of a graph, J. Math. Mech., 12(1963), 303-314. Zbl0109.41701MR145512
  10. [10] W. Gustin - Orientable embedding of Cayley graphs, Bull. Amer. Math. Soc., 69 (1963), 272-275. Zbl0118.18805MR145506
  11. [11] O. Ore - The four-color problem, Pure and Applied Maths., 27, Acad. PressNew York-London, 1967. Zbl0149.21101MR216979
  12. [12] J. W. T . Youngs - The Heawood map-colouring conjecture, Chapter 12 in Graph Theory and Theoretical physics (F. Harary ed.), Acad. PressNew York- London, 1967, 313-354. Zbl0205.54402MR236059
  13. [13] W. Mader - Homomorphiesätze für Graphen, Math. Annalen, 178(1968), 154-168. Zbl0165.57401MR229550
  14. [14] H. Heesch - Untersuchungen zum Vierfarbenproblem, B.I. Hochschulskripten 810/810a/810b, Bibliographische InstituteMannheim-Vienna-Zürich, 1969. Zbl0187.20904MR248048
  15. [15] N. Biggs - Classification of complete maps on orientable surfaces, Rend. Matematica (VI), 4(1971), 645-655. Zbl0235.05104MR321773
  16. [16] H. Mahnke - The necessity of non-abelian groups in the case 0 of the Heawood map-coloring theorem, J. Comb.Theory, 13(1972), 263-265. Zbl0244.05103MR321774
  17. [17] W. Tutte - H. Whitney - Kempe chains and the four color problem, Utilitas Mathemetica, 2(1972), 241-281. Zbl0253.05120MR309782
  18. [18] G. Ringel - Map color theorem, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen Band 209, Springer-Verlag, Berlin-New York, 1974, 191 pages. Zbl0287.05102MR349461
  19. [19] M. Jungerman - Orientable triangular embeddings of K18 - K3 and K13 - K3 , J. Comb. Theory (B),16(1974), 293-294. Zbl0277.05108MR342421
  20. [20] J.L. Gross - Voltage graphs, Discrete Mathematics, 9(1974), 239-246. Zbl0286.05106MR347651
  21. [21] J.L. Gross - T.W. Tucker - Quotients of complete graphs : revisiting the Heawood map-colouring problem, Pacific J. Math., 55(1974), 391-402. Zbl0306.55001MR389635
  22. [22] M. Jungerman - The genus of K - K2 , J. Comb. Theory (B),18(1975), 53-58. Zbl0317.05104MR366718
  23. [23] M. Jungerman - A new solution for the non-orientable case 1 of the Heawood map color theorem, J. Comb. Theory (B),19(1975), 69-71. Zbl0306.05105MR406848
  24. [24] S.R. Alpert- J.L. Gross - Components of branched coverings of current graphs, J. Comb. Theory (B), 20(1976), 283-303. Zbl0298.05107MR419278
  25. [25] G. Ringel - The combinatorial map color theorem, J. Graph Theory1 (Summer 1977), 141-155. Zbl0386.05030MR444509
  26. [26] K. Appel- W. Haken - Every planar map is four colorable, Part I : discharging, Part II : reducibility, Illinois J. Math. MR1025335
  27. [27] K. Appel- W. Haken- J. Mayer - Triangulations à V5 séparés dans le problème des quatre couleurs. Zbl0344.05113
  28. [28] R. Ringel - Non-existence of graph embeddings, Theory and Applications of graphs, Springer-Verlag. Zbl0398.05031
  29. [29] M. Jungerman - D.J. Pengelley - Index four orientable embeddings and case zero of the Heawood conjecture, J. Comb. Theory (B) ∼ August 1978. Zbl0331.05102
  30. [30] J.L. Gross - T.W. Tucker - Generating all graph coverings by permutation voltage assignments. Zbl0375.55001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.