The Wave Group and Radiation Fields on Asymptotically Hyperbolic Manifolds

Antônio Sá Barreto[1]

  • [1] Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A.

Séminaire Équations aux dérivées partielles (1999-2000)

  • Volume: 1999-2000, page 1-11

How to cite


Sá Barreto, Antônio. "The Wave Group and Radiation Fields on Asymptotically Hyperbolic Manifolds." Séminaire Équations aux dérivées partielles 1999-2000 (1999-2000): 1-11. <>.

affiliation = {Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A.},
author = {Sá Barreto, Antônio},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-11},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {The Wave Group and Radiation Fields on Asymptotically Hyperbolic Manifolds},
url = {},
volume = {1999-2000},
year = {1999-2000},

AU - Sá Barreto, Antônio
TI - The Wave Group and Radiation Fields on Asymptotically Hyperbolic Manifolds
JO - Séminaire Équations aux dérivées partielles
PY - 1999-2000
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1999-2000
SP - 1
EP - 11
LA - eng
UR -
ER -


  1. S. Agmon, A representation theorem for solutions of Schrödinger type equations on non-compact Riemannian manifolds. Astérisque 210 Vol. 2, 13-26, (1992). Zbl0791.58104MR1221349
  2. L. Andersson, P.T. Chrusciel, H. Friedrich, On the regularity of solutions to the Yamabe problem and the existence of smooth hyperboloidal initial data for Einstein’s field equations. Comm. Math. Phys. 149, 587-612, (1992). Zbl0764.53027
  3. D. Borthwick, P. Perry, Scattering poles for asymptotically hyperbolic manifolds. Preprint, 1999. Zbl1009.58021MR1867379
  4. J. Chazarin. Formule de Poisson pour les varietés Riemanniennes. Inventiones Math. 24, 65-82 (1974). Zbl0281.35028MR343320
  5. T. Christiansen. Scattering theory for manifolds with cylindrical ends. J. Funct. Anal. 131, 499-530 (1995). Zbl0837.58034MR1345040
  6. T. Christiansen. Weyl asymptotics for the Laplacian on asymptotically Euclidean spaces. American J. of Math. 121, 1-22 (1999). Zbl0924.58006MR1704995
  7. J. Duistermaat, V.W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics. Inventiones mathematicae 29, 39-79 (1975). Zbl0307.35071MR405514
  8. J. Duistermaat, L Hörmander, Fourier integral operators II. Acta Mathematica 128, 184-269 (1972). Zbl0232.47055MR388464
  9. C.R. Graham, Volume and area renormalization for conformally compact Eistein metrics. Preprint 1999. MR1758076
  10. F.G. Friedlander, Radiation fields and hyperbolic scattering theory. Math. Proc. Camb. Phil. Soc. 88, 483-515, (1980). Zbl0465.35068MR583989
  11. F.G. Friedlander, Notes on the wave equation on asymptotically Euclidean manifolds. To appear in J. of Functional Analysis. Zbl0997.58013MR1846782
  12. L. Guillopé, M. Zworski, Scattering asymptotics for Riemann surfaces. Ann. of Math. 145, 597-660, (1997). Zbl0898.58054MR1454705
  13. L. Guillopé, M. Zworski, The wave trace for Riemann surfaces. GAFA, Geom. Func. Anal. 9, 1156-1168, (1999). Zbl0947.58022MR1736931
  14. S. Helgason, Wave equations on homogeneous spaces. Lecture Notes in Math., 1077, 254-287 (1984). Zbl0547.58037MR765556
  15. L. Hörmander, Fourier integral operators I. Acta Mathematica 127, 79-183, (1971). Zbl0212.46601MR388463
  16. L. Hörmander, The spectral function of an elliptic operator. Acta Mathematica 121, 193-218, (1968). Zbl0164.13201MR609014
  17. L. Hörmander, The analysis of Partial Differential Operators. Vol 3. Springer Verlag, 1985. Zbl0601.35001
  18. M.S. Joshi, A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds. Acta Mathematica 184 41-86, 2000. Zbl1142.58309MR1756569
  19. M.S. Joshi, A. Sá Barreto, The wave group on asymptotically hyperbolic manifolds. Preprint, 2000. Zbl0997.58010MR1851000
  20. L.A. Kiprijanov, L.A. Ivanov, The Euler-Poisson equation in a Riemannian space. Soviet Math. Dokl. 24 No. 2 331-335 (1981). Zbl0488.35065
  21. P. Lax, R. Phillips, Scattering theory for automorphic forms. Ann. of Math. Studies No. 87 Princeton Univ Press, 1976. Zbl0362.10022MR562288
  22. R. Mazzeo, The Hodge cohomology of a conformally compact metric. Journ. Diff. Geom. 28 (1988) 309-339. Zbl0656.53042MR961517
  23. R. Mazzeo, Elliptic theory of differential edge operators I. Comm. PDE 16 (1991), 1615-1664. Zbl0745.58045MR1133743
  24. R. Mazzeo, R.B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. Journal of Functional Analysis, 75, No 2, (1987), 260-310. Zbl0636.58034MR916753
  25. R.B. Melrose, Transformation of boundary value problems. Acta Mathematica, 147 (1981) no 3–4, 149–236. Zbl0492.58023MR639039
  26. R.B. Melrose, Differential Analysis on Manifolds with Corners. To appear. Zbl0754.58035
  27. R.B. Melrose, Spectral and Scattering Theory for the Laplacian on Asymptotically Euclidean Spaces. Spectral and Scattering Theory, (M. Ikawa, ed.), Marcel Dekker, 1994. Zbl0837.35107MR1291640
  28. R.B Melrose, Geometric scattering theory. Cambridge University Press, 1995. Zbl0849.58071MR1350074
  29. R.B. Melrose, The Atiyah-Patodi-Singer Index Theorem. A.K. Peters, Wellesley, MA, 1993. Zbl0796.58050MR1348401
  30. R. B. Melrose and A. Sá Barreto, Non-linear interaction of a cusp and a plane. Comm. in P.D.E, 20 (5 & 6), 961-1032 (1995). Zbl0847.35086MR1326913
  31. A. Sá Barreto, M. Zworski, Distribution of resonances for spherical black holes. Math. Res. Letters 4, 103-121 (1997). Zbl0883.35120MR1432814
  32. A. Sá Barreto, Radiation fields for asymptotically hyperbolic manifolds. In preparation. Zbl1154.58310
  33. R. Seeley, Complex powers of elliptic operators. Singular Integrals. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, R.I 288-307, 1967. Zbl0159.15504MR237943

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.