Modélisation de la transition vers la turbulence

Gérard Iooss

Séminaire Bourbaki (1982-1983)

  • Volume: 25, page 179-197
  • ISSN: 0303-1179

How to cite

top

Iooss, Gérard. "Modélisation de la transition vers la turbulence." Séminaire Bourbaki 25 (1982-1983): 179-197. <http://eudml.org/doc/110006>.

@article{Iooss1982-1983,
author = {Iooss, Gérard},
journal = {Séminaire Bourbaki},
keywords = {transition to turbulence; incompressible fluids; bifurcation theory; models of Lorenz; Rayleigh-Bénard convection; period doubling; population dynamics; motion of a pendulum; intermittency effects},
language = {fre},
pages = {179-197},
publisher = {Société Mathématique de France},
title = {Modélisation de la transition vers la turbulence},
url = {http://eudml.org/doc/110006},
volume = {25},
year = {1982-1983},
}

TY - JOUR
AU - Iooss, Gérard
TI - Modélisation de la transition vers la turbulence
JO - Séminaire Bourbaki
PY - 1982-1983
PB - Société Mathématique de France
VL - 25
SP - 179
EP - 197
LA - fre
KW - transition to turbulence; incompressible fluids; bifurcation theory; models of Lorenz; Rayleigh-Bénard convection; period doubling; population dynamics; motion of a pendulum; intermittency effects
UR - http://eudml.org/doc/110006
ER -

References

top
  1. [1] A. Arnéodo, P. Coullet, C. Tresser, Occurence of strange attractors in three-dimensional Volterra equations, Phys.Lett.79A, 4, 259, (1980) Zbl0432.58014MR590579
  2. [2] A. Arnéodo, P. Coullet, C. Tresser, Oscillators with chaotic behavior, J.Stat.Phys., 27,1, 171, (1982) Zbl0522.58033MR656874
  3. [3] V. Arnold, Chapitres supplémentaires de la Théorie des Equations Différentielles ordinaires, MIR, Moscou, (1980) Zbl0455.34001MR626685
  4. [4] D.G. Aronson, M.A. Chory, G.R. Hall, R.P. Mc Gehee, Bifurcations from an invariant circle for two-parameter families of maps of the plane, Comm.Math.Phys.83, 303, (1982) Zbl0499.70034MR649808
  5. [5] P. Bergé, M. Dubois, P. Manneville, Y. Pomeau, Intermittency in Rayleigh-Bénard convection, J. de Phys. Lettres41, L341, (1980) 
  6. [6] M. Brachet, D. Meiron, S. Orszag, B. Nickel, R. Morf, U. Frisch, J.Fluid.Mech.,(1982), (à paraître) 
  7. [7] A. Chenciner, Bifurcations de difféomorphismes de IR2, au voisinage d'un point fixe elliptique. Chaotic behavior of deterministic systems, Les Houches Summer school 1981, North Holland, (à paraître) Zbl0582.58025MR806175
  8. [8] P. Collet, J.P. Eckmann,Iterated maps on the interval as dynamical systems, P. Ph 1, Birkhaüser, Boston, 1980 Zbl0458.58002MR613981
  9. [9] M. Dubois, P. Bergé, V. Croquette, Study of non steady convective regimes using Poincaré sections, J.de Phys.Lettres43, L295, (1982) 
  10. [10] J.P. Eckmann, Route to chaos with special emphasis on period doubling. Chaotic behavior of deterministic systems, Les Houches Summer school 1981, North Holland, (à paraître) Zbl0616.58032
  11. [11] C. Foias, G. Prodi, Rend. Sem. Math., Univ. Padova39, 1, (1967) Zbl0176.54103MR223716
  12. [12] C. Foias, O.P. Manley, R. Témam, I.M. Trèves, Number of modes governing two-dimensional viscous incompressible flows, Phys. Rev. Lett., 50, 14, p. 1031-1034, 1983. MR700069
  13. [13] H. Fujita, T. Kato, On the Navier-Stokes initial value problem I, Arch. Rat. Mech. Anal.16, 4 , 269, (1964) Zbl0126.42301MR166499
  14. [14] M. Giglio, S. Musazzi, U. Perini, Transition to chaos via a well ordered sequence of period doubling bifurcations, Phys.Rev.Lett.47, 243, (1981) 
  15. [15] J.P. Gollub, S.V. Benson, Many routes to turbulent convection, J.Fluid Mech.,100, 3, 449, (1980) 
  16. [16] J. Guckenheimer, On a codimension two bifurcation, Dynamical Systems and Turbulence, p.99, Lecture Notes in Math., 898, Springer Verlag, 1981 Zbl0482.58006MR654886
  17. [17] M. Hénon, Y. Pomeau, Two strange attractors with a simple structure, Turbulence and Navier Stokes equations, Orsay1975, Lecture Notes in Math565, (1976) Zbl0379.76049MR448436
  18. [18] J.H. Curry, J.R. Herring, J. Loncaric, S.A. Orszag, Order and disorder in two and three dimensional Bénard convection, (preprint). Zbl0547.76093
  19. [19] E. Hopf, A mathematical example displaying features of turbulence, Comm. Pure & Appl. Math.1, 303, (1948) Zbl0031.32901MR30113
  20. [20] G. Iooss, Sur la deuxième bifurcation d'une solution stationnaire de systèmes du type Navier-Stokes, partie II, Arch.Rat.Mech.Anal.64, 339, (1977) Zbl0356.35068MR650472
  21. [21] G. Iooss, Bifurcation of maps and applications, North Holland Math.Studies36, Amsterdam, 1979 Zbl0408.58019MR531030
  22. [21]2 G. Iooss, Persistance d'un cercle invariant par une application voisinede "l'application temps T "d'un champ de vecteurs intégrable(I&II), CR.Ac.Sci.ParisA, 1982 (à paraître) Zbl0526.34033
  23. [22] A. Chenciner, G. Iooss, Bifurcations de tores invariants, Arch.Rat.Mech.Anal, 69, 2, 109-198 et 71, 301-306, (1979) Zbl0405.58033MR521266
  24. [23] V.I. Iudovich, On the stability of steady flows of a viscous incompressible fluid, D.A.N. SSSR, 161, 5, 1037, (1965) Zbl0139.21901
  25. [24] L. Landau, E. Lifchitz, Mécanique des fluides, p.131-132, MIR, Moscou1971 
  26. [25] O.E. Lanford III, Smooth transformations of intervals, Séminaire Bourbaki,n°563, 1980 Zbl0514.58028
  27. [26] O.E. Lanford III, Introduction to the mathematical theory of dynamical systems, Chaotic behavior of deterministic systems, Les Houches Summer school 1981, North Holland (à paraître) Zbl0565.58027
  28. [27] O.A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon & Breach (2nd ed.), New York1969 Zbl0184.52603MR254401
  29. [28] O.A. Ladyzhenskaya, Mathematical analysis of Navier-Stokes equations for incompressible liquids, Annual Rev. Fluid Mech.7, 249, (1975) Zbl0344.76014
  30. [29] E.N. Lorenz, Deterministic nonperiodic flow, J. Atm. Sci.20, 130,(1963) 
  31. [30] J. Maurer, A. Libchaber, Rayleigh-Bénard experiment in liquid helium; frequency locking and the onset of turbulence, J. de Phys.Lettres40, L419,(1979) 
  32. [31] M. Misiurewicz, Maps of an internal. Chaotic behavior of deterministic systems, Les Houches Summer school 1981, North Holland, (à paraître) Zbl0565.58025
  33. [32] S.E. Newhouse, The creation of non-trivial recurrence in the dynamics of diffeomorphisms. Chaotic behavior of deterministic systems, Les Houches Summer school 1981, North Holland (à paraître) Zbl0556.58017
  34. [33] Y. Pomeau, P. Manneville, Intermittency and the Lorenz model, Physics Lett.75A,1, (1979) Zbl0985.37503MR594556
  35. [34] D. Ruelle, F. Takens, On the nature of turbulence, Comm. Math. Phys.,20, 167-192, (1971) Zbl0223.76041MR284067
  36. [35] L.P. Shil'nikov, Sov.Math.Dokl.,6, 163,(1965), et Mat.USSR, Sb.10, 91,(1970) MR193352
  37. [36] R. Témam, Navier-Stokes equations, North Holland, Amsterdam, 1977 Zbl0383.35057MR769654
  38. [37] C. Vidal, A. Pacault (éd.), Nonlinear phenomena in chemical dynamics, Springer Series in Synergetics12, Springer Verlag, (1981) MR689902
  39. [38] R.F. Williams, The structure of Lorenz attractors, Turbulence seminar, Berkeley1976-77, Lecture Notes in Math.615, p.94,(1977). Zbl0363.58005MR461581

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.