La théorie classique et moderne des fonctions symétriques

Pierre Cartier

Séminaire Bourbaki (1982-1983)

  • Volume: 25, page 1-23
  • ISSN: 0303-1179

How to cite

top

Cartier, Pierre. "La théorie classique et moderne des fonctions symétriques." Séminaire Bourbaki 25 (1982-1983): 1-23. <http://eudml.org/doc/110008>.

@article{Cartier1982-1983,
author = {Cartier, Pierre},
journal = {Séminaire Bourbaki},
keywords = {representations of symmetric groups; survey; symmetric functions; generating series; partitions; symmetric formal power series; Hopf bigebra; general linear groups},
language = {fre},
pages = {1-23},
publisher = {Société Mathématique de France},
title = {La théorie classique et moderne des fonctions symétriques},
url = {http://eudml.org/doc/110008},
volume = {25},
year = {1982-1983},
}

TY - JOUR
AU - Cartier, Pierre
TI - La théorie classique et moderne des fonctions symétriques
JO - Séminaire Bourbaki
PY - 1982-1983
PB - Société Mathématique de France
VL - 25
SP - 1
EP - 23
LA - fre
KW - representations of symmetric groups; survey; symmetric functions; generating series; partitions; symmetric formal power series; Hopf bigebra; general linear groups
UR - http://eudml.org/doc/110008
ER -

References

top
  1. [1] D. Foata (éditeur) - Combinatoire et représentation du groupe symétrique, Lecture Notes in Math. vol. 579, Springer-Verlag, 1977. Zbl0342.00005MR466293
  2. [2] G. Andrews - The theory of partitions, Encycl. of Math. vol. 2, Addison-Wesley, 1976. Zbl0655.10001
  3. [3] W. Bailey - Generalized hypergeometric functions, Cambridge Univ. Press, 1964 (2e édition). 
  4. [4] N. Bourbaki - Algèbre, chapitres 4 à 7, Masson, 1981. Zbl0498.12001MR643362
  5. [5] G. James et A. Kerber - The representation theory of the symmetric group, Encycl. of Math. vol. 16, Addison-Wesley, 1981. Zbl0491.20010MR644144
  6. [6] D. Knuth - The art of computer programming, vol. 3 ("Sorting and searching"), Addison-Wesley, 1975. Zbl0883.68015MR378456
  7. [7] D. Knutson - λ-rings and the representation theory of symmetric groups, Lecture Notes in Math. vol. 380, Springer-Verlag, 1973. Zbl0272.20008
  8. [8] J.E. Littlewood - The theory fo group characters and matrix representations of groups, Oxford, 1950 (2e édition). Zbl0038.16504
  9. [9] I.G. Macdonald - Symmetric functions and Hall polynomials, OxfordUniversity Press, 1979. Zbl0899.05068MR553598
  10. [10] P. Macmahon - Combinatory Analysis, 2 volumes, Cambridge University Press, 1915/16 (réimprimé par Chelsea, 1960). MR141605JFM46.0118.07
  11. [11] P. Macmahon - Collected Papers, vol. 1, M.I.T. Press, 1978. Zbl0557.01015MR514405
  12. [12] F. Murnaghan - The theory of group representations, Dover Publ., 1963 (réimpression). Zbl0131.02701MR175982
  13. [13] G. de B. Robinson - Representation theory of the symmetric group, University of Toronto Press, 1961. Zbl0102.02002MR125885
  14. [14] H. Weyl - The classical groups, their invariants and representations, Princeton University Press, 1939. MR1488158JFM65.0058.02
  15. [15] A. Young - Collected Papers, University of Toronto Press, 1977. Zbl0362.01007MR439548
  16. [16] A. Zelevinsky - Representations of finite classical groups (A Hopf approach), Lecture Notes in Math. vol. 869, Springer-Verlag, 1981. Zbl0465.20009MR643482
  17. [17] D. Foata et M.P. Schützenberger - Théorie géométrique des polynômes eulériens, Lecture Notes in Math. vol. 138, Springer-Verlag, 1970. Zbl0214.26202MR272642
  18. [18] P. Doubilet - On the foundations of combinatorial theory VII : Symmetric functions through the theory of distribution and occupancy, Studies in Appl. Math.51(1972), 377-396. Zbl0274.05008MR429577
  19. [19] J. Désarmenien - Fonctions symétriques associées à des suites classiques de nombres, Annales Sci. E.N.S.16(1983), Zbl0525.05006MR732346
  20. [20] I. Schur - Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen, in Gesammelte Abhandlungen, tome 1, p. 1-70, Springer-Verlag, 1973. JFM32.0165.04
  21. [21] P. Hoffman - τ-rings and wreath product representations, Lecture Notes in Math. vol. 746, Springer-Verlag, 1979. Zbl0443.55013
  22. [22] A. Lascoux - Classes de Chern d'un produit tensoriel, Comptes Rendus Acad. Sci. Paris t. 286, série A(1978), 385-387. Zbl0379.55011MR476745
  23. [23] J. Green - The characters of the finite general linear group, Trans. Amer. Math. Soc. 80(1955), 402-447. Zbl0068.25605MR72878
  24. [24] D.K. Faddeev - The complex representations of the general linear group over a finite field, Zapiski Nauchn. LOMI, 46(1974), 64-88. Zbl0346.20024MR382417
  25. [25] S.V. Nagornyi - Complex representations of classical groups over a finite field, Zapiski Nauchn. LOMI, 86(1979), 135-156. Zbl0433.20034MR535486
  26. [26] A. Lascoux et M.P. Schützenberger - Le monoïde plaxique, in Noncommutative structures in algebra and geometric combinatories, p. 129-156, Quaderni Ricerca Scientifica n° 109, 1981. Zbl0517.20036MR646486
  27. [27] H.O. Foulkes - Eulerian numbers, Newcomb's problem and representations of symmetric groups, Discrete Math.30(1980), 3-49. Zbl0445.05008MR561763
  28. [28] A. Lascoux - Classes de Chern des variétés de drapeaux, Comptes rendus Acad.Sci. Paris t. 295, série I(1982), 393-398. Zbl0495.14032MR684734
  29. [29] P. Cartier - Groupes formels, représentations des groupes symétriques et congruences de Kummer, Sém. Théorie des Nombres, Paris1982-83, à paraître dans Progress in Math., Birkhäuser. 
  30. [30] G. Baster - An analytic problem whose solution follows from a simple algebraic identity, Pac. Journ. Math.10(1960), 731-742. Zbl0095.12705MR119224
  31. [31] P. Cartier - La série génératrice exponentielle, Publication I.R.M.A., Strasbourg, 1972. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.