Détermination des caractères des groupes finis simples : travaux de Lusztig

Pierre Cartier

Séminaire Bourbaki (1985-1986)

  • Volume: 28, page 137-161
  • ISSN: 0303-1179

How to cite

top

Cartier, Pierre. "Détermination des caractères des groupes finis simples : travaux de Lusztig." Séminaire Bourbaki 28 (1985-1986): 137-161. <http://eudml.org/doc/110058>.

@article{Cartier1985-1986,
author = {Cartier, Pierre},
journal = {Séminaire Bourbaki},
keywords = {irreducible characters; finite groups of Lie type; connected reductive group; Frobenius map; maximal torus; Borel subgroup; Deligne-Lusztig virtual characters; -adic cohomology; semisimple classes; Jordan decomposition; irreducible constituents},
language = {fre},
pages = {137-161},
publisher = {Société Mathématique de France},
title = {Détermination des caractères des groupes finis simples : travaux de Lusztig},
url = {http://eudml.org/doc/110058},
volume = {28},
year = {1985-1986},
}

TY - JOUR
AU - Cartier, Pierre
TI - Détermination des caractères des groupes finis simples : travaux de Lusztig
JO - Séminaire Bourbaki
PY - 1985-1986
PB - Société Mathématique de France
VL - 28
SP - 137
EP - 161
LA - fre
KW - irreducible characters; finite groups of Lie type; connected reductive group; Frobenius map; maximal torus; Borel subgroup; Deligne-Lusztig virtual characters; -adic cohomology; semisimple classes; Jordan decomposition; irreducible constituents
UR - http://eudml.org/doc/110058
ER -

References

top
  1. [1] A. Borel (éditeur) - Seminar on algebraic groups and related finite groups, Lect. Notes in Math., 131(1970), Springer, Berlin. Zbl0192.36201MR258838
  2. [2] N. Bourbaki - Groupes et Algèbres de Lie, chap. 4 à 6, Masson, Paris, 1981. Zbl0483.22001MR647314
  3. [3] N. Bourbaki - Groupes et Algèbres de Lie, chap. 7 et 8, Hermann, Paris, 1975. Zbl0483.22001MR453824
  4. [4] R.W. Carter - Simple groups of Lie type, Wiley, New York, 1972. Zbl0723.20006MR407163
  5. [5] R.W. Carter - Finite groups of Lie type : conjugacy classes and complex characters, Wiley-Interscienoe, New York, 1985. Zbl0567.20023MR794307
  6. [6] D. Gorenstein - Finite simple groups, an introduction to their classification, Plenum Press, New York, 1982. Zbl0483.20008MR698782
  7. [7] R. Steinberg - Lectures on Chevalley groups, Yale University, 1967. MR466335
  8. [8] J.-L. Brylinski - (Co)-homologie d'intersection et faisceaux pervers, exposé n° 585, Astérisque92-93(1982). Zbl0574.14017MR689529
  9. [9] J.-P. Serre - Représentations linéaires des groupes finis "algébriques" [d'après Deligne - Lusztig], exposé n° 487, Lect. Notes in Math., 567(1977), Springer. Zbl0367.20045MR435240
  10. [10] T.A. Springer - Caractères de groupes de Chevalley finis, exposé n° 429, Lect. Notes in Math., 383(1974), Springer. Zbl0296.20019MR463276
  11. [11] T.A. Springer - Quelques applications de la cohomologie d'intersection, exposé n° 589, Astérisque105-106(1983). Zbl0526.22014
  12. [12] G. Lusztig - The discrete series of GLn over a finite field, Annals of Mathematics Studies, 81(1974), Princeton University Press. Zbl0293.20038MR382419
  13. [13] G. Lusztig - On the Green polynomials of classical groups, Proc. London Math. Soc., 33(1976), p. 443-475. Zbl0371.20037MR424959
  14. [ 14] G. Lusztig - Coxeter orbits and eigenspaces of Frobenius, Invent. Math., 38 (1976/77), p. 101-159. Zbl0366.20031MR453885
  15. [15] G. Lusztig - Representations of finite Chevalley groups, CBMS Regional Conference Series in Mathematics (A.M.S.), 39(1977). Zbl0418.20037MR518617
  16. [16] G. Lusztig - On the finiteness of the number of unipotent classes, Invent. Math., 34(1976), p. 201-213. Zbl0371.20039MR419635
  17. [17] G. Lusztig - Characters of reductive groups over a finite field, Annals of Math. Studies, 107(1984), Princeton University Press. Zbl0556.20033MR742472
  18. [18] G. Lusztig - Intersection cohomology complexes on a reductive group, Invent. Math., 75(1984), p. 205-272. Zbl0547.20032MR732546
  19. [19] G. Lusztig - Left cells in Weyl groups, Lect. Notes in Math., 1024(1983), Springer. Zbl0537.20019MR727851
  20. [20] G. Lusztig - Characters of reductive groups over finite fields, Proceedings of the Int. Congress of Math., Warszawa, 1983, p. 877-880. Zbl0572.20026MR804741
  21. [21] G. Lusztig et D. Vogan - Singularities of closures of K-orbits on a flag manifold, Invent. Math., 71 (1983) , p. 365-379. Zbl0544.14035MR689649
  22. [22] P. Deligne et G. Lusztig - Representations of reductive groups over finite fields, Ann. of Math., 103(1976)., p. 103-161. Zbl0336.20029MR393266
  23. [23] J.A. Green - The characters of the finite linear groups, Trans. Amer. Math. Soc., 80(1955), p. 402-447. Zbl0068.25605MR72878
  24. [24] T. Shoji - On the Springer representations of the Weyl groups of classical algebraic groups, Comm. Algebra, 7(1979), p. 1713-1745 (et corrections p. 2027-2033). Zbl0426.20028MR546195
  25. [25] T.A. Springer - Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math., 36(1976), p. 173-207. Zbl0374.20054MR442103
  26. [26] T.A. Springer - A construction of representations of Weyl groups, Invent. Math., 44(1978), p. 279-293. Zbl0376.17002MR491988
  27. [27] T. Asai - On the zeta functions of the varieties X(w) of the split classical groups and the unitary groups, Osaka J. Math., 20(1983), p. 21-32. Zbl0515.20026MR695614
  28. [28] C.T. Benson et C.W. Curtis - On the degrees and rationality of certain characters of finite Chevalley groups, Trans. Amer. Math. Soc., 165 (1972) , p. 251-273 et 202(1975), p. 405-406. Zbl0246.20008MR304473
  29. [29] C.W. Curtis, N. Iwahori, R. Kilmoyer - Hecke algebras and characters of parabolic type of finite groups with (BN) pairs, Publ. Math. IHES, 40(1972), p. 81-116. Zbl0254.20004MR347996
  30. [30] F. Digne et J. Michel - Descente de Shintani des caractères d' un groupe de Chevalley fini, C.R. Acad. Sci. Paris, t. 287 (1978), Série A, p. 811-814. Zbl0425.20039
  31. [31] P.N. Hoefsmit - Representations of Hecke algebras of finite groups with BN-pairs of classical type, Ph.D. thesis, Univ. of British Columbia, Vancouver, 1974. 
  32. [32] R.B. Howlett et G.I. Lehrer - Induced cuspidal representations and generalized Hecke rings, Invent. Math., 58(1980), p. 37-64. Zbl0435.20023MR570873
  33. [33] N. Iwahori - On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo, 10(1964), p. 215-236. Zbl0135.07101MR165016
  34. [34] A.A. Beilinson, J. Bernstein et P. Deligne - Faisceaux pervers, Astérisque100(1982). Zbl0536.14011MR751966
  35. [35] A. Borel et al. - Intersection cohomology, Progress in Math., vol. 50(1984), Birkhaüser, Boston. Zbl0553.14002MR788171
  36. [36] P. Deligne - SGA 41/2, Cohomologie étale, Lecture Notes in Math., 569 (1977) , Springer. Zbl0349.14008MR463174
  37. [37] P. Deligne - La conjecture de Weil, I et II, Publ. Math. IHES, 43(1974), p. 273-307 et 52(1980), p. 137-252. Zbl0456.14014MR340258
  38. [38] J.S. Milne - Etale cohomology, Princeton University Press, 1980. Zbl0433.14012MR559531

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.