Quelques résultats de finitude en théorie des invariants

Jacques Dixmier

Séminaire Bourbaki (1985-1986)

  • Volume: 28, page 163-175
  • ISSN: 0303-1179

How to cite

top

Dixmier, Jacques. "Quelques résultats de finitude en théorie des invariants." Séminaire Bourbaki 28 (1985-1986): 163-175. <http://eudml.org/doc/110059>.

@article{Dixmier1985-1986,
author = {Dixmier, Jacques},
journal = {Séminaire Bourbaki},
keywords = {connected semisimple algebraic group; finite-dimensional rational G- modules; algebra of invariants; homological dimension},
language = {fre},
pages = {163-175},
publisher = {Société Mathématique de France},
title = {Quelques résultats de finitude en théorie des invariants},
url = {http://eudml.org/doc/110059},
volume = {28},
year = {1985-1986},
}

TY - JOUR
AU - Dixmier, Jacques
TI - Quelques résultats de finitude en théorie des invariants
JO - Séminaire Bourbaki
PY - 1985-1986
PB - Société Mathématique de France
VL - 28
SP - 163
EP - 175
LA - fre
KW - connected semisimple algebraic group; finite-dimensional rational G- modules; algebra of invariants; homological dimension
UR - http://eudml.org/doc/110059
ER -

References

top
  1. [1] O.M. Adamovich and E.M. Golovina - Simple linear Lie groups having a free algebra of invariants, Questions in group theory and homological algebra, Vyp. 2, Izdat. Yaroslav Gos. Univ., Yaroslav, 1979, 3-41. Zbl0446.22017MR742478
  2. [2] E.M. Andreev and V.L. Popov - On stationary subgroups of points in general position in the representation space of a semisimple Lie group, Funktsional Anal. i Prilozhen, 5, 1971, 1-8. Zbl0246.22017MR291174
  3. [3] N. Bourbaki - Groupes et algèbres de Lie, chap. 7-8, Paris, 1975. Zbl0483.22001
  4. [4] M. Hochster and J.L. Roberts - Rings of invariants of reductive groups acting on regular rings are Cohen - Macaulay, Adv. in Math., 13, 1974, 115-175. Zbl0289.14010MR347810
  5. [5] V.G. Kac, V.L. Popov et E.B. Vinberg - Sur les groupes linéaires algébriques dont l'algèbre des invariants est libre, C.R. Acad. Sci. Paris, 283, 1976, 875-878. Zbl0343.20023MR419468
  6. [6] V.G. Kac - Root systems, representations of quivers and invariant theory, Lecture Notes in Math., 996, 1982. Zbl0534.14004MR718127
  7. [7] D. Luna - Slices étales, Mém. Soc. Math. France, 33, p. 81-105. Zbl0286.14014MR342523
  8. [8] D. Luna - Adhérences d'orbites et invariants, Invent. Math., 29, 1975, 231-238. Zbl0315.14018MR376704
  9. [9] V.L. Popov - A finiteness theorem for representations with a free algebra of invariants, Izv. Akad. Nauk SSSR, 46, 1982, 347-370. Zbl0547.20034MR651651
  10. [10] V.L. Popov - Syzygies in the theory of invariants, Izv. Akad. Nauk SSSR, 47, 1983, 544-622. Zbl0573.14003MR703596
  11. [11] V.L. Popov - Stability criteria for the action of a semisimple group on a factorial manifold, Izv. Akad. Nauk SSSR, 34, 1970, 523-531. Zbl0261.14011MR262416
  12. [12] G.W. Schwarz - Représentations of simple Lie groups with regular ring of invariants, Invent. Math., 49, 1978, 167-191. Zbl0391.20032MR511189
  13. [13] R.P. Stanley - Combinatorial reciprocity theorems, Adv. in Math., 14, 1974, 194-253. Zbl0294.05006MR411982
  14. [14] R.P. Stanley - Combinatories and invariant theory, Proc. Sympos. Pure Math., 34, 1979, 345-355. Zbl0411.22006MR525334
  15. [15] E.B. Vinberg and A.L. Onishchik - Seminar on algebraic groups and Lie groups, Izdat. Moskov. Gos. Univ., Moscow, 1969. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.