Calcul stochastique non commutatif

Paul-André Meyer

Séminaire Bourbaki (1986-1987)

  • Volume: 29, page 55-66
  • ISSN: 0303-1179

How to cite

top

Meyer, Paul-André. "Calcul stochastique non commutatif." Séminaire Bourbaki 29 (1986-1987): 55-66. <http://eudml.org/doc/110087>.

@article{Meyer1986-1987,
author = {Meyer, Paul-André},
journal = {Séminaire Bourbaki},
keywords = {stochastic differential equations; noncommutative (quantum) probability theory; noncommutative stochastic processes},
language = {fre},
pages = {55-66},
publisher = {Société Mathématique de France},
title = {Calcul stochastique non commutatif},
url = {http://eudml.org/doc/110087},
volume = {29},
year = {1986-1987},
}

TY - JOUR
AU - Meyer, Paul-André
TI - Calcul stochastique non commutatif
JO - Séminaire Bourbaki
PY - 1986-1987
PB - Société Mathématique de France
VL - 29
SP - 55
EP - 66
LA - fre
KW - stochastic differential equations; noncommutative (quantum) probability theory; noncommutative stochastic processes
UR - http://eudml.org/doc/110087
ER -

References

top
  1. R.L. Hudson et K.R. ParthasarathyQuantum Ito's formula and stochastic evolutions, Comm. Math. Phys.1984, p. 301-323. Zbl0546.60058MR745686
  2. H. MaassenQuantum Markov processes on Fock space described by integral kernels. Quantum probability and applications II, p. 361-374. (Heidelberg1984, L. Accardi et W. von Waldenfels ed.) Lecture Notes in Math.1136. MR819517
  3. P.-A. Meyer - Éléments de probabilités quantiques, Sém. Prob.XX, p. 186-312 (J. Azéma et M. Yor éd.). Lecture Notes in Math.1204, Springer1986 (à suivre vol. XXI). Zbl0604.60001MR942022
  4. C. Barnett, R.F. Streater, I.F. Wilde - The Ito-Clifford Integral, J. Functional Anal.48, 1982 ; J. London M. Soc.27, 1983 ; Comm. Math. Phys.89, 1983 ; Zbl0492.46051MR674057
  5. J. Operator Theory11, 1984. 
  6. Cf. C. Barnett et I. Wilde, J. Funct. Anal.58, 1984 ; D.B. Applebaum et R.L. Hudson, Comm. Math. Phys.96, 1984. MR759103
  7. R.L. Hudson, J.M. Lindsay - Uses of non-Fock brownian motion and a quantum martingale representation theorem. Quantum probability and applications II, Proceedings Heidelberg1984, Lecture Notes in Math.1136. Zbl0569.60055
  8. K.R. Parthasarathy et K.B. SinhaStochastic integral representation of bounded quantum martingales in Fock space, et Stop times in Fock space quantum stochastic calculus. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.