Many–Body Aspects of Approach to Equilibrium
Eric Carlen[1]; M.C. Carvalho[2]; Michael Loss[1]
- [1] School of Mathematics, Georgia Tech, Atlanta, GA 30332
- [2] On leave from Departamento do Mathématica, de Faculdade ci Ciencias de Lisboa, 1700 Lisboa codex Portugal
Séminaire Équations aux dérivées partielles (2000-2001)
- Volume: 2000-2001, page 1-10
Access Full Article
topHow to cite
topReferences
top- Carlen, E., Carvalho, M. and Loss, M., (in preparation).
- Carlen, E., Gabetta, E. and Toscani, G., Propagation of Smoothness and the Rate of Exponential Convergence to Equilibrium for a Spatially Homogeneous Maxwellian Gas, Commun. Math. Phys. 205, 521–546, 1999. Zbl0927.76088MR1669689
- Diaconis, P. and Saloff–Coste, L., Bounds for Kac’s Master equation, Commun. Math. Phys. 209, 729–755, 2000. Zbl0953.60098
- Janvresse, E., Spectral Gap for Kac’s model of Boltzmann Equation, Preprint 1999. Zbl1034.82049
- Kac, M., Foundations of kinetic theory, Proc. 3rd Berkeley symp. Math. Stat. Prob., J. Neyman, ed. Univ. of California, vol 3, pp. 171–197, 1956. Zbl0072.42802MR84985
- Gruenbaum, F. A., Propagation of chaos for the Boltzmann equation, Arch. Rational. Mech. Anal. 42, 323–345, 1971. Zbl0236.45011MR334788
- Gruenbaum, F. A., Linearization for the Boltzmann equation, Trans. Amer. Math. Soc. 165, 425–449, 1972. Zbl0236.45012MR295718
- McKean, H., Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas, Arch. Rational Mech. Anal. 21, 343–367, 1966. Zbl1302.60049