Some recent developments in the theory of properly embedded minimal surfaces in
Séminaire Bourbaki (1991-1992)
- Volume: 34, page 463-535
- ISSN: 0303-1179
Access Full Article
topHow to cite
topRosenberg, Harold. "Some recent developments in the theory of properly embedded minimal surfaces in $\mathbb {R}^3$." Séminaire Bourbaki 34 (1991-1992): 463-535. <http://eudml.org/doc/110163>.
@article{Rosenberg1991-1992,
author = {Rosenberg, Harold},
journal = {Séminaire Bourbaki},
keywords = {stable minimal surfaces; annular end theorem; periodic minimal surfaces; finite total curvature},
language = {eng},
pages = {463-535},
publisher = {Société Mathématique de France},
title = {Some recent developments in the theory of properly embedded minimal surfaces in $\mathbb \{R\}^3$},
url = {http://eudml.org/doc/110163},
volume = {34},
year = {1991-1992},
}
TY - JOUR
AU - Rosenberg, Harold
TI - Some recent developments in the theory of properly embedded minimal surfaces in $\mathbb {R}^3$
JO - Séminaire Bourbaki
PY - 1991-1992
PB - Société Mathématique de France
VL - 34
SP - 463
EP - 535
LA - eng
KW - stable minimal surfaces; annular end theorem; periodic minimal surfaces; finite total curvature
UR - http://eudml.org/doc/110163
ER -
References
top- [B.Do C.] J.L. Barbosa and M. Do Carmo. On the size of a stable minimal surface in IR3. American Journal of Mathematics98(2) : 515-528, 1976. Zbl0332.53006MR413172
- [C.-H.-M] M. Callahan, D. Hoffman, and W.H. Meeks III. The structure of singlyperiodic minimal surfaces. Inventiones Math.99 : 455-481, 1990. Zbl0695.53005MR1032877
- [Cost.-1] C. Costa. Imersöes minimas en IR3 de gênero un e curvatura total finita. PhD thesis, IMPA, Rio de Janeiro, Brazil, 1982.
- [Cost.-2] C. Costa. Example of a complete minimal immersion in IR3 of genus one and three embedded ends. Bull. Soc. Bras. Mat.15 : 47-54, 1984. Zbl0613.53002MR794728
- [Cost.-3] C. Costa. Uniqueness of minimal surfaces embedded in IR3 with total curvature -12π. Journal of Differential Geometry30(3) : 597-618, 1989. Zbl0696.53001
- [Cour.] R. Courant. Dirichlet's Principle, Conformal Mapping and Minimal Surfaces. Interscience Publishers, Inc., New York, 1950. Zbl0040.34603MR36317
- [Darb.] G. Darboux. Leçons sur la théorie générale des surfaces et les applications géometriques du calcul infinitésimal. Gauthier-Villars, Paris, 1st part, 2nd edition, 1914. JFM45.0881.05
- [Do C.-P.] M. Do Carmo and C.K. Peng. Stable minimal surfaces in IR3 are planes. Bulletin of the AMS1 : 903-906, 1979. Zbl0442.53013MR546314
- [Doug.] J. Douglas, Solution of the problem of Plateau, Trans. AMS33 : 263-321, 1931. Zbl57.1542.03MR1501590JFM57.1542.03
- [F.-Oss.] R. Finn and R. Osserman. On the Gauss curvature of non-parametric minimal surfaces, J. Anal. Math.12 : 351-364, 1964. Zbl0122.16404MR166694
- [F.C.] D. Fischer-Colbrie. On complete minimal surfaces with finite Morse index in 3-manifolds. Inventiones Math.82 : 121-132, 1985. Zbl0573.53038MR808112
- [Fr.-M.] C. Frohman and W.H. Meeks III. The topological uniqueness of complete one-ended minimal surfaces and Heegard surfaces in IR3, preprint. Zbl0886.57015
- [Fuj.-1] H. Fujimoto. On the number of exceptional values of the Gauss maps of minimal surfaces. Journal of the Math. Society of Japan40(2) : 235-247, 1988. Zbl0629.53011MR930599
- [Fuj.-2] H. Fujimoto. Modified defect relations for the Gauss map of minimal surfaces. Journal of Differential Geometry29 : 245-262, 1989. Zbl0676.53005MR982173
- [G.-T.] D. Gilbarg and N.S. Trudinger. Elliptic partial differential equations of Zbl1042.35002
- second order. Springer-Verlag, New York, 2nd edition, 1983.
- [H.-S.] R. Hardt and L. Simon. Boundary reguarity and embedded minimal solutions for the oriented Plateau problem. Annals of Math. 110 : 439- 486, 1979. Zbl0457.49029MR554379
- [Heinz] E. Heinz. Über die Lösungen der Minimalflächengleichung. Nachr. Akad. Wiss. Göttingen Math. Phys. K1, II (1952) 51-56. Zbl0048.15401MR54182
- [H.-M.-1] D. Hoffman and W.H. Meeks III. A complete embedded minimal surface in IR3 with genus one and three ends. Journal of Differential Geometry21 : 109-127, 1985. Zbl0604.53002MR806705
- [H.-M.-2] D. Hoffman and W.H. Meeks III. Properties of properly embedded minimal surfaces of finite total curvature. Bulletin of the AMS17(2) : 296-300, 1987. Zbl0634.53003MR903736
- [H.-M.-3] D. Hoffman and W.H. Meeks III. The asymptotic behavior of properly embedded minimal surfaces of finite topology. Journal of AMS2(4) : 667-681, 1989 Zbl0683.53005MR1002088
- [H.-M.-4] D. Hoffman and W.H. Meeks III. The strong halfspace theorem for minimal surfaces. Inventiones Math.101 : 373-377, 1990. Zbl0722.53054MR1062966
- [H.-M.-5] D. Hoffman and W.H. Meeks III. Minimal surfaces based on the catenoid. Amer. Math. Monthly, Special Geometry Issue97(8) : 702-730, 1990. Zbl0737.53006MR1072813
- [H.-Wei] D. Hoffman and F. Wei. Adding handles to the helicoid, preprint. Zbl0787.53003
- [E.H.] E. Hopf. On an inequality for minimal surfaces z = f(x, y), J. Rat. Mech. Anal.2 : 519-522, 1953. Zbl0051.12601MR55735
- [Hub.] A. Huber. On subharmonic functions and differential geometry in the large. Commentari Mathematici Helvetici32 : 181-206, 1957. Zbl0080.15001MR94452
- [J.-S.] H. Jenkins, J. Serrin. Variational problems of minimal surface type II, Arch. Rat. Mech. Analysis21 : 321-342, 1966. Zbl0171.08301MR190811
- [J.-Xav.] L. Jorge, F. Xavier. A complete minimal surface in a slab of IR3, Annals of Maths, 1980, 203-206. Zbl0455.53004MR584079
- [K.-1] H. Karcher. Construction of minimal surfaces. Surveys in Geometry, pages 1-96, 1989. University of Tokyo, 1989, and Lecture Notes No.12, SFB256, Bonn, 1989.
- [K.-2] H. Karcher. Embedded minimal surfaces derived from Scherk's examples. Manuscripta Math.62 : 83-114,1988. Zbl0658.53006MR958255
- [K.-3] H. Karcher. The triply periodic minimal surfaces of Alan Schoen and Zbl0687.53010
- their constant mean curvature companions. Manuscripta Math.64 : 291- 357, 1989. Zbl0687.53010MR1003093
- [K.-4] H. Karcher. Construction of higher genus embedded minimal surfaces. Geom. and Top. of Sub. III World Sc.174-191, 1990. Zbl0737.53007MR1344467
- [L.-R.] R. Langevin and H. Rosenberg. A maximum principle at infinity for minimal surfaces and applications. Duke Math. Journal57 : 819-828, 1988. Zbl0667.49024MR975123
- [Lo.-Ros] F.J. Lopez and A. Ros. On embedded complete minimal surfaces of genus zero. Journal of Differential Geometry33(1) : 293-300, 1991. Zbl0719.53004MR1085145
- [M.-1] W.H. Meeks III. The geometry, topology and existence of periodic minimal surfaces, preprint.
- [M.-2] W.H. Meeks III. Lectures on Plateau's Problem. Insituto de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, Brazil, 1978.
- [M.-3] W.H. Meeks III. The theory of triply-periodic minimal surfaces. Indiana University Math. Journal39(3) : 877-936, 1990. Zbl0721.53057MR1078743
- [M.-R.-1] W.H. Meeks III and H. Rosenberg. The global theory of doubly periodic minimal surfaces. Inventiones Math.97 : 351-379, 1989. Zbl0676.53068MR1001845
- [M.-R.-2] W.H. Meeks III and H. Rosenberg. The maximum principle at infinity for minimal surfaces in flat three-manifolds. Commentari Mathematici Helvetici65 : 255-270, 1990. Zbl0713.53008MR1057243
- [M.-R.-3] W.H. Meeks III and H. Rosenberg. The geometry and conformal structure of properly embedded minimal surfaces of finite topology in IR3, to appear in Invent. Math. Zbl0803.53007
- [M.-R.-4] W.H. Meeks III and H. Rosenberg. The geometry of periodic minimal surfaces, to appear in Comment. Math. Helv. Zbl0807.53049MR1241472
- [M.-Wh.] W.H. Meeks III and B. White. Minimal surfaces bounded by convex curves in parallel planes. Commentari Mathematici Helvetici66 : 263- 278, 1991. Zbl0731.53004MR1107841
- [M.-Y.] W.H. Meeks and S.T. Yau. The existence of embedded minimal surfaces and the problem of uniqueness. Math. Z.179 : 151-168, 1982. Zbl0479.49026MR645492
- [N.] J.C.C. Nitsche. A characterization of the catenoid. Journal of Math. Mech.11 : 293-302, 1962. Zbl0106.14602MR137043
- [Oss.-1] R. Osserman. Global properties of minimal surfaces in E3 and En. Annals of Math.80(2) : 340-364, 1964. Zbl0134.38502MR179701
- [Oss.-2] R. Osserman. On the Gauss curvature of minimal surfaces. Trans. AMS96 : 115-128, 1960. Zbl0093.34303MR121723
- [P.-Ros] J. Pérez and A. Ros. Some uniqueness and nonexistence theorems for embedded minimal surfaces, preprint. Zbl0789.53004MR1204835
- [Rado-1] T. Rado. The problem of the least area and the problem of Plateau. Math. Z.32 : 763-796, 1930. MR1545197JFM56.0436.01
- [Rado-2] T. Rado. On the problem of Plateau. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin1933. Zbl59.1341.01MR344979JFM59.1341.01
- [Reif.] R. Reifenberg. Solution for the Plateau problem for m-dimensional surfaces of varying topological type. Acta Math.104 : 1-92, 1960. Zbl0099.08503MR114145
- [R.-T.-1] H. Rosenberg and E. Toubiana. A cylindrical type complete minimal surface in a slab of IR3. Bull. Sc. Math. III, pages 241-245, 1987. Zbl0631.53012MR912952
- [R.-T.-2] H. Rosenberg and E. Toubiana. Complete minimal surfaces and minimal herissons. Journal of Differential Geometry28 : 115-132, 1988. Zbl0657.53004MR950557
- [R.-S.E.] Sa Earp and H. Rosenberg. The Dirichlet problem for the minimal surface equation on unbounded planar domains. Journal de Mathématiques Pures et Appliquées68 : 163-183, 1989. Zbl0696.49069MR1010767
- [Sch.-1] R. Schoen. Uniqueness, symmetry, and embeddedness of minimal surfaces. Journal of Differential Geometry18 : 791-809, 1983. Zbl0575.53037MR730928
- [Sch.-2] R. Schoen. Estimates for Stable Minimal Surfaces in Three Dimensional Manifolds, volume 103 of Annals of Math. Studies. Princeton University Press, 1983. Zbl0532.53042MR795231
- [Simon] L. Simon. Lectures on geometric measure theory. In Proceedings of the Center for Mathematical Analysis, volume 3, Canberra, Australia, 1983. Australian National University. Zbl0546.49019MR756417
- [Smale] N. Smale. A bridge principle for minimal and constant mean curvature submanifolds of IRn. Invent. Math. 90 : 505-549, 1987. Zbl0637.49020MR914848
- [M.S.] M. Soret. Deformations de surfaces minimales. Thèse Univ. ParisVII, 1992.
- [Souam] R. Souam. Stabilité et unicité des surfaces minimales. Thèse Univ. ParisVII, 1992. Zbl0880.53009
- [T.] E. Toubiana. On the uniqueness of the helicoid. Ann. Inst. Four.38 : 121-132, 1988. Zbl0645.53032MR978243
- [Wei] F. Wei. Some existence and uniqueness theorems for doubly periodicminimal surfaces, to appear in Invent. Math. Zbl0773.53005MR1168368
- [Wh.] B. White. Complete surfaces of finite total curvature. Journ. Diff. Geom.26 : 315-326, 1987. Zbl0631.53007MR906393
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.