Sur la phase linéaire de l’instabilité de Rayleigh-Taylor

Olivier Lafitte[1]

  • [1] CEA DM2S/DIR, Centre d’Etudes de Saclay, 91 191 Gif sur Yvette Cedex, CMAT, Ecole Polytechnique, 91 128 Palaiseau Cedex

Séminaire Équations aux dérivées partielles (2000-2001)

  • Volume: 2000-2001, page 1-20

How to cite

top

Lafitte, Olivier. "Sur la phase linéaire de l’instabilité de Rayleigh-Taylor." Séminaire Équations aux dérivées partielles 2000-2001 (2000-2001): 1-20. <http://eudml.org/doc/11017>.

@article{Lafitte2000-2001,
affiliation = {CEA DM2S/DIR, Centre d’Etudes de Saclay, 91 191 Gif sur Yvette Cedex, CMAT, Ecole Polytechnique, 91 128 Palaiseau Cedex},
author = {Lafitte, Olivier},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-20},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Sur la phase linéaire de l’instabilité de Rayleigh-Taylor},
url = {http://eudml.org/doc/11017},
volume = {2000-2001},
year = {2000-2001},
}

TY - JOUR
AU - Lafitte, Olivier
TI - Sur la phase linéaire de l’instabilité de Rayleigh-Taylor
JO - Séminaire Équations aux dérivées partielles
PY - 2000-2001
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2000-2001
SP - 1
EP - 20
LA - fre
UR - http://eudml.org/doc/11017
ER -

References

top
  1. S. Benzoni-Gavage, D. Serre, K. ZumbrunAlternate Evans functions and visous shock waves à paraitre Zbl0985.34075
  2. R. Betti, V. GoncharovMultiple cut-off wave numbers of the ablative Rayleigh-Taylor instability Phys. Rev. E 50 (5) 3968-3972, 1994. 
  3. S. ChandrasekharHydrodynamic and hydromagnetic stability Oxford University Press, Oxford, 1961 Zbl0142.44103MR128226
  4. C. Cherfils, O. LafitteAnalytic solutions of the Rayleigh equation for linear density profiles Phys. Rev E 62 2967-2970, 2000. 
  5. C. Cherfils-Clerouin, O. Lafitte, P.A. RaviartAsymptotic results for the linear stage of the Rayleigh-Taylor instability à paraitre dans Mathematical Fluid Mechanics, Birkhauser, 2001. Zbl0984.35128MR1865049
  6. K.A. Gardner, K. ZumbrunThe gap lemma and geometric criteria for instability of viscous shock profiles Comm. Pure Appl. Math., 51 (7) : 797-855. Zbl0933.35136MR1617251
  7. V. Goncharov, R. Betti et al,Self consistent stability analysis of ablation fronts with large Froude numbers Phys. Plasmas 3 (4), 1401-1414, 1996 MR1408177
  8. V. Goncharov, R. Betti et alSelf consistent stability analysis of ablation fronts with small Froude numbers Phys. Plasmas 3 (12), 4665-4676, 1996 
  9. V. GoncharovSelf consistent stability analysis of ablation fronts in Inertial Confinement Fusion PhD Thesis, Univ. of Rochester, N.Y., 1998 
  10. B. Helffer, O. LafitteOn spectral questions around the Rayleigh equation en préparation 
  11. B. Helffer, J. SjostrandMultiple wells in the semiclassical limit I Comm. in P. D. E. 9 (4) (1984) 337-408. Zbl0546.35053MR740094
  12. R.E. KidderLaser driven compression of hollow shells : power requirements and stability limitations Nuclear Fusion 16 (1) 3-14, 1976 
  13. H.J. KullTheory of the Rayleigh-Taylor instability Physics Reports (Rev. Sec. of Phys. Letters) 206 (5) 197-325, North-Holland, 1991 
  14. O. LafitteAnalysis of the discrete spectrum of the Rayleigh equation : application to the linear Rayleigh-Taylor instability Preprint du CMAT 2000-24 (Ecole Polytechnique, Palaiseau 2000). 
  15. K. O. MikaelianLasnex simulations of the classical and laser-driven Rayleigh-Taylor instability Phys. Rev. A, 42 (8) 4944-4951, 1990 
  16. K. O. MikaelianConnection between the Rayleigh and the Schrödinger equations Phys. Rev. E, 53 (4) 1996. MR1388233
  17. A.R. Piriz, J. Sanz, L.F. IbanezRayleigh-Taylor instability of steady ablation fronts : the discontinuity model revisited Phys. Plasmas 4 1117 (1997) MR1448128
  18. Lord J.W.S. RayleighInvestigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density Proc. London Math. Soc. 14, 170-177, 1883 
  19. L. Spitzer, jr, R. HaermTransport phenomena in a completely ionized gas Phys. Rev II Ser. 89, 977-981 (1953) Zbl0050.23505
  20. H. Takabe, K. Mima, L. Montierth, R. L. MorseSelf-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma Phys. Fluids 28 (2) 3676-3682, 1985. Zbl0587.76074MR815468
  21. G. TaylorThe instability of liquid surfaces when accelerated in a direction perpendicular to their planes Proc. Roy. Soc. London Ser. A 201 (1950) 192-196. Zbl0038.12201MR36104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.