Sur la phase linéaire de l’instabilité de Rayleigh-Taylor
- [1] CEA DM2S/DIR, Centre d’Etudes de Saclay, 91 191 Gif sur Yvette Cedex, CMAT, Ecole Polytechnique, 91 128 Palaiseau Cedex
Séminaire Équations aux dérivées partielles (2000-2001)
- Volume: 2000-2001, page 1-20
Access Full Article
topHow to cite
topLafitte, Olivier. "Sur la phase linéaire de l’instabilité de Rayleigh-Taylor." Séminaire Équations aux dérivées partielles 2000-2001 (2000-2001): 1-20. <http://eudml.org/doc/11017>.
@article{Lafitte2000-2001,
affiliation = {CEA DM2S/DIR, Centre d’Etudes de Saclay, 91 191 Gif sur Yvette Cedex, CMAT, Ecole Polytechnique, 91 128 Palaiseau Cedex},
author = {Lafitte, Olivier},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-20},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Sur la phase linéaire de l’instabilité de Rayleigh-Taylor},
url = {http://eudml.org/doc/11017},
volume = {2000-2001},
year = {2000-2001},
}
TY - JOUR
AU - Lafitte, Olivier
TI - Sur la phase linéaire de l’instabilité de Rayleigh-Taylor
JO - Séminaire Équations aux dérivées partielles
PY - 2000-2001
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2000-2001
SP - 1
EP - 20
LA - fre
UR - http://eudml.org/doc/11017
ER -
References
top- S. Benzoni-Gavage, D. Serre, K. ZumbrunAlternate Evans functions and visous shock waves à paraitre Zbl0985.34075
- R. Betti, V. GoncharovMultiple cut-off wave numbers of the ablative Rayleigh-Taylor instability Phys. Rev. E 50 (5) 3968-3972, 1994.
- S. ChandrasekharHydrodynamic and hydromagnetic stability Oxford University Press, Oxford, 1961 Zbl0142.44103MR128226
- C. Cherfils, O. LafitteAnalytic solutions of the Rayleigh equation for linear density profiles Phys. Rev E 62 2967-2970, 2000.
- C. Cherfils-Clerouin, O. Lafitte, P.A. RaviartAsymptotic results for the linear stage of the Rayleigh-Taylor instability à paraitre dans Mathematical Fluid Mechanics, Birkhauser, 2001. Zbl0984.35128MR1865049
- K.A. Gardner, K. ZumbrunThe gap lemma and geometric criteria for instability of viscous shock profiles Comm. Pure Appl. Math., 51 (7) : 797-855. Zbl0933.35136MR1617251
- V. Goncharov, R. Betti et al,Self consistent stability analysis of ablation fronts with large Froude numbers Phys. Plasmas 3 (4), 1401-1414, 1996 MR1408177
- V. Goncharov, R. Betti et alSelf consistent stability analysis of ablation fronts with small Froude numbers Phys. Plasmas 3 (12), 4665-4676, 1996
- V. GoncharovSelf consistent stability analysis of ablation fronts in Inertial Confinement Fusion PhD Thesis, Univ. of Rochester, N.Y., 1998
- B. Helffer, O. LafitteOn spectral questions around the Rayleigh equation en préparation
- B. Helffer, J. SjostrandMultiple wells in the semiclassical limit I Comm. in P. D. E. 9 (4) (1984) 337-408. Zbl0546.35053MR740094
- R.E. KidderLaser driven compression of hollow shells : power requirements and stability limitations Nuclear Fusion 16 (1) 3-14, 1976
- H.J. KullTheory of the Rayleigh-Taylor instability Physics Reports (Rev. Sec. of Phys. Letters) 206 (5) 197-325, North-Holland, 1991
- O. LafitteAnalysis of the discrete spectrum of the Rayleigh equation : application to the linear Rayleigh-Taylor instability Preprint du CMAT 2000-24 (Ecole Polytechnique, Palaiseau 2000).
- K. O. MikaelianLasnex simulations of the classical and laser-driven Rayleigh-Taylor instability Phys. Rev. A, 42 (8) 4944-4951, 1990
- K. O. MikaelianConnection between the Rayleigh and the Schrödinger equations Phys. Rev. E, 53 (4) 1996. MR1388233
- A.R. Piriz, J. Sanz, L.F. IbanezRayleigh-Taylor instability of steady ablation fronts : the discontinuity model revisited Phys. Plasmas 4 1117 (1997) MR1448128
- Lord J.W.S. RayleighInvestigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density Proc. London Math. Soc. 14, 170-177, 1883
- L. Spitzer, jr, R. HaermTransport phenomena in a completely ionized gas Phys. Rev II Ser. 89, 977-981 (1953) Zbl0050.23505
- H. Takabe, K. Mima, L. Montierth, R. L. MorseSelf-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma Phys. Fluids 28 (2) 3676-3682, 1985. Zbl0587.76074MR815468
- G. TaylorThe instability of liquid surfaces when accelerated in a direction perpendicular to their planes Proc. Roy. Soc. London Ser. A 201 (1950) 192-196. Zbl0038.12201MR36104
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.