Progrès récents en calcul stochastique quantique

Paul-André Meyer

Séminaire Bourbaki (1992-1993)

  • Volume: 35, page 35-47
  • ISSN: 0303-1179

How to cite

top

Meyer, Paul-André. "Progrès récents en calcul stochastique quantique." Séminaire Bourbaki 35 (1992-1993): 35-47. <http://eudml.org/doc/110175>.

@article{Meyer1992-1993,
author = {Meyer, Paul-André},
journal = {Séminaire Bourbaki},
keywords = {noncommutative stochastic differential equations; quantum stochastic differential equations},
language = {fre},
pages = {35-47},
publisher = {Société Mathématique de France},
title = {Progrès récents en calcul stochastique quantique},
url = {http://eudml.org/doc/110175},
volume = {35},
year = {1992-1993},
}

TY - JOUR
AU - Meyer, Paul-André
TI - Progrès récents en calcul stochastique quantique
JO - Séminaire Bourbaki
PY - 1992-1993
PB - Société Mathématique de France
VL - 35
SP - 35
EP - 47
LA - fre
KW - noncommutative stochastic differential equations; quantum stochastic differential equations
UR - http://eudml.org/doc/110175
ER -

References

top
  1. * Accardi ( L.), Frigerio ( A.) and Lewis ( J.). Quantum stochastic processes, Publ. RIMS Kyoto, 18, 1982, p. 94-133. Zbl0498.60099MR660823
  2. * Accardi ( L.), Journé ( J.L.) et Lindsay ( J.M.). On multidimensional markovian cocycles, QP.IV, p. 59-66. 
  3. Applebaum ( D.). 1. Quantum stochastic parallel transport on non-commutative vector bundles, QP.III, p. 20-36. 2. Unitary evolutions and horizontal lifts in quantum stochastic calculus, Comm. Math. Phys., 140, 1991, p. 63-80. 3. Towards a quantum theory of classical diffusions on Riemannian manifolds, QP. VI, p. 93-111. Zbl0734.60107MR1124259
  4. * Barnett ( C.), Streater ( R.F.) et Wilde ( I.F.). 1. The Ito-Clifford integral I, J. Funct. Anal.48, 1982, p. 172-212. 2. — II, J. London Math. Soc. 27, 1983, p. 373-384. 3. — III, Markov properties of solutions to s.d.e.'s, Comm. Math. Phys.89, 1983, p. 13-17. 4 —IV, a Radon-Nikodym theorem and bracket processes, J. Oper. Th.11, 1984, p. 255-271. Belavkin ( V.P.). A quantum non adapted Ito formula and stochastic analysis in Fock scale, J. Funct. Anal., 102, 1991, p. 414-447. MR674057
  5. Chebotarev ( A.M.). The theory of conservative dynamical semigroups and its applications, à paraître. Zbl1128.47315
  6. Chebotarev ( A.M.) et Fagnola ( F.). Sufficient conditions for conservativity of quantum dynamical semigroups. J. Funct. Anal., à paraître. Zbl0801.46083MR1245599
  7. Davies ( E.B.). Quantum Theory of Open Systems, Academic Press, 1976. Zbl0388.46044MR489429
  8. Evans ( M.). Existence of quantum diffusions, Prob. Th. Rel. Fields, 81, 1989, p. 473-483. Zbl0667.60060MR995806
  9. Evans ( M.) et Hudson ( R.L.). * 1. Multidimensional quantum diffusions, QP.III, p. 69-88. 2. Perturbation of quantum diffusions, J. London Math. Soc., 41, 1992, p. 373-384. Zbl0719.60083MR1067276
  10. Fagnola ( F.). 1. On quantum stochastic differential equations with unbounded coefficients, Prob. Theory Rel. Fields, 86, 1990, p.501-516. Zbl0685.60058MR1074742
  11. 2. Pure birth and death processes as quantum flows in Fock space, Sankhya, ser. A, 53, 1991, p. 288-297. Zbl0776.46028MR1189772
  12. 3. Unitarity of solutions to quantum stochastic differential equations and conservativity of the associated quantum dynamical semigroup, QP. VII, à paraître. Zbl0789.47027
  13. 4. Chebotarev's sufficient conditions for conservativity of quantum dynamical semigroups, à paraître. 
  14. 5. Diffusion processes in Fock space, à paraître. 
  15. 6. Characterization of isometric and unitary weakly differentiable cocycles in Fock space, à paraître QP. VIII. 
  16. Fagnola ( F.) et Sinha ( K.B.). Quantum flows with unbounded structure maps and finite degrees of freedom, J. London M. Soc., à paraître. Zbl0791.60053
  17. * Gorini ( V.), Kossakowski ( A.) et Sudarshan ( E.). Completely positive dynamical semigroups of n-level systems, J. Math. Phys., 17, 1976, p. 821-825. MR406206
  18. * Hudson ( R.L.), Karandikar ( R.L.) et Parthasarathy ( K.R.). Towards a theory of non commutative semimartingales adapted to brownian motion and a quantum Ito's formula, Theory and Applications of Random Fields, Bangalore1982, LNCI49, 1983, p. 96-110. Hudson ( R.L.) et Parthasarathy ( K.R.). * 1. Quantum Ito's formula and stochastic evolutions, Comm. Math. Phys., 93, 1984, p. 301-303. * 2. Stochastic dilations of uniformly continuous completely positive semigroups, Acta Appl. Math., 2, 1988, p. 353-398. * 3. Unification of fermion and boson stochastic calculus, Comm. Math. Phys., 104, 1986, p. 457-470. Hudson ( R.L.) et Robinson ( P.). Quantum diffusions and the noncommutative torus, Lett. Math. Phys., 15, 1988, p. 47-53. 
  19. * Journé ( J.L.). Structure des cocycles markoviens sur l'espace de Fock. Prob. Theory Rel. Fields, 75, 1987, p. 291-316. Zbl0595.60066MR885468
  20. * Lindblad ( G.). On the generators of quantum dynamical semigroups. Comm. Math. Phys., 48, 1976, p. 119-130. Zbl0343.47031MR413878
  21. Meyer ( P.A.). Quantum Probability for probabilists, à paraître aux LNM, 1993. Zbl0773.60098MR1222649
  22. Mohari ( A.). 1. Quantum stochastic calculus with infinite degrees of freedom and its applications. PhD thesis, ISI Delhi1992. 2. Quantum stochastic differential equations with unbounded coefficients and dilations of Feller's minimal solution. Sankhya, ser. A, 53, 1991, p. 255-287. Zbl0751.60062MR1189771
  23. Mohari ( A.) et Parthasarathy ( K.R.). 1. On a class of generalized Evans-Hudson flows related to classical Markov processes. 2. A quantum probabilistic analogue of Feller's condition for the existence of unitary Markovian cocycles in Fock space, preprint. 
  24. Mohari ( A.) et Sinha ( K.B.). 1. Quantum stochastic flows with infinite degrees of freedom and countable state Markov processes. Sankhya, ser. A, 52, 1990, p. 43-57. Zbl0719.60126MR1176275
  25. Parthasarathy ( K.R.). 1. An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel1992. Zbl0751.60046MR1164866
  26. Parthasarathy ( K.R.) et Sinha ( K.B.). Boson-Fermion transformations in several dimensions, Pramana J. Phys., 27, 1986, p. 105-116. 2. Markov chains as Evans-Hudson diffusions in Fock space. Sém. Prob. XXIV, LNM1426, 1990, p. 362-369. 3. Unification of quantum noise processes in Fock space, QP. VI, p. 371-384. 
  27. VI Ncent-Smith ( G.F.). 1. Unitary quantum stochastic evolutions, Proc. London Math. Soc., 63, 1991, p. 1-25 2. Quantum stochastic evolutions with unbounded generators, QP. VI, p. 465-472. Zbl0751.46040MR1114515

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.