Scattering matrix in conformal geometry

C. Robin Graham[1]; Maciej Zworski[2]

  • [1] Department of Mathematics, University of Washington, Box 354350,Seattle, WA 98195
  • [2] Department of Mathematics, University of California Berkeley, CA 94720

Séminaire Équations aux dérivées partielles (2000-2001)

  • Volume: 152, Issue: 1, page 1-14

How to cite


Graham, C. Robin, and Zworski, Maciej. "Scattering matrix in conformal geometry." Séminaire Équations aux dérivées partielles 152.1 (2000-2001): 1-14. <>.

affiliation = {Department of Mathematics, University of Washington, Box 354350,Seattle, WA 98195; Department of Mathematics, University of California Berkeley, CA 94720},
author = {Graham, C. Robin, Zworski, Maciej},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {scattering matrix; conformal structure; Einstein manifold; (asymptotically) hyperbolic metric; Q-curvature},
language = {eng},
number = {1},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Scattering matrix in conformal geometry},
url = {},
volume = {152},
year = {2000-2001},

AU - Graham, C. Robin
AU - Zworski, Maciej
TI - Scattering matrix in conformal geometry
JO - Séminaire Équations aux dérivées partielles
PY - 2000-2001
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 152
IS - 1
SP - 1
EP - 14
LA - eng
KW - scattering matrix; conformal structure; Einstein manifold; (asymptotically) hyperbolic metric; Q-curvature
UR -
ER -


  1. M. Anderson, L 2 curvature and volume renormalization for AHE metrics on 4-manifolds, Math. Res. Lett. 8 (2001), to appear, math-DG/0011051. Zbl0999.53034MR1825268
  2. T. Branson, Sharp inequalities, the functional determinant, and the complementary series, Trans. AMS 347 (1995), 3671-3742. Zbl0848.58047MR1316845
  3. S.-Y.A. Chang, J. Qing, and P.C. Yang, Compactification of a class of conformally flat 4-manifolds, Invent. Math. 147(2000), 65-93. Zbl0990.53026MR1784799
  4. C. Fefferman and C.R. Graham, Conformal invariants, in The mathematical heritage of Élie Cartan (Lyon, 1984). Astérisque, 1985, Numero Hors Serie, 95–116. Zbl0602.53007MR837196
  5. C.R. Graham, Volume and area renormalizations for conformally compact Einstein metrics, Rend. Circ. Mat. Palermo, Ser.II, Suppl. 63 (2000), 31-42. Zbl0984.53020MR1758076
  6. C.R. Graham, R. Jenne, L.J. Mason, and G.A.J. Sparling Conformally invariant powers of the Laplacian. I. Existence. J. London Math. Soc. (2) 46 (1992), 557–565. Zbl0726.53010MR1190438
  7. C.R. Graham and J. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 (1991), 186-225. Zbl0765.53034MR1112625
  8. C.R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT correspondence, Nucl. Phys. B 546 (1999), 52-64, hep-th/9901021. Zbl0944.81046MR1682674
  9. C.R. Graham and M. Zworski, Scattering matrix in conformal geometry, in preparation. Zbl1030.58022
  10. L. Guillopé and M. Zworski, Scattering asymptotics for Riemann surfaces, Ann. Math. 145(1997), 597-660. Zbl0898.58054MR1454705
  11. M. Henningson and K. Skenderis, The holographic Weyl anomaly, J. High Ener. Phys. 07 (1998), 023, hep-th/9806087; Holography and the Weyl anomaly, hep-th/9812032. Zbl0958.81083MR1644988
  12. M. Joshi and A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds, Acta Math. 184(2000), 41–86. Zbl1142.58309MR1756569
  13. M. Joshi and A. Sá Barreto, The wave group on asymptotically hyperbolic manifolds, to appear in J. Funct. Anal. Zbl0997.58010MR1851000
  14. J. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2(1998), 231–252, hep-th/9711200. Zbl0914.53047MR1633016
  15. R. Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential Geom. 28(1988), 309–339. Zbl0656.53042MR961517
  16. R. Mazzeo, Elliptic theory of differential edge operators. I, Comm. Partial Differential Equations 16(1991), 1615–1664. Zbl0745.58045MR1133743
  17. R. Mazzeo and R. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), 260-310. Zbl0636.58034MR916753
  18. R.B. Melrose, Geometric Scattering Theory. Cambridge University Press, 1995. Zbl0849.58071MR1350074
  19. R. Melrose and M. Zworski, Scattering metrics and geodesic flow at infinity. Invent. Math. 124(1996), 389-436. Zbl0855.58058MR1369423
  20. R. Newton, Scattering theory of waves and particles, McGraw-Hill Book Co., New York-Toronto-London 1966. MR221823
  21. S. J. Patterson and P. A. Perry, The divisor of Selberg’s zeta function for Kleinian groups, Duke Math. J. 106 (2001), 321-390. Appendix A by C. Epstein, An asymptotic volume formula for convex cocompact hyperbolic manifolds. Zbl1012.11083
  22. P. Perry, The Laplace operator on a hyperbolic manifold. II. Eisenstein series and the scattering matrix, J. reine. angew. Math. 398 (1989), 67-91. Zbl0677.58044MR998472
  23. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998), 253-290, hep-th/9802150. Zbl0914.53048MR1633012
  24. M. Zworski, Resonances in physics and geometry. Notices Amer. Math. Soc. 46 (1999), 319–328. Zbl1177.58021MR1668841

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.