Harmonic functions on loop groups

Leonard Gross

Séminaire Bourbaki (1997-1998)

  • Volume: 40, page 271-286
  • ISSN: 0303-1179

How to cite

top

Gross, Leonard. "Harmonic functions on loop groups." Séminaire Bourbaki 40 (1997-1998): 271-286. <http://eudml.org/doc/110248>.

@article{Gross1997-1998,
author = {Gross, Leonard},
journal = {Séminaire Bourbaki},
keywords = {path group; loop group; Brownian motion on groups; Laplacian on groups},
language = {eng},
pages = {271-286},
publisher = {Société Mathématique de France},
title = {Harmonic functions on loop groups},
url = {http://eudml.org/doc/110248},
volume = {40},
year = {1997-1998},
}

TY - JOUR
AU - Gross, Leonard
TI - Harmonic functions on loop groups
JO - Séminaire Bourbaki
PY - 1997-1998
PB - Société Mathématique de France
VL - 40
SP - 271
EP - 286
LA - eng
KW - path group; loop group; Brownian motion on groups; Laplacian on groups
UR - http://eudml.org/doc/110248
ER -

References

top
  1. [1] Shigeki Aida, On the Ornstein-Uhlenbeck operators on Wiener-Riemannian manifolds, J. Funct. Anal.116 (1993), no. 1, 83-110. Zbl0795.60043
  2. [2] _, Gradient estimates of harmonic functions and the asymptotics of spectral gaps on path spaces, Interdiscip. Inform. Sci.2 (1996), no. 1, 75-84. Zbl0921.31007
  3. [3] _, Logarithmic Sobolev inequalities on loop spaces over compact Riemannian manifolds, Stochastic analysis and applications (Powys, 1995), World Sci. Publishing, River Edge, NJ, 1996, 1-19. Zbl0918.60041
  4. [4] Shigeki Aida and David Elworthy, Differential calculus on path and loop spaces. I. Logarithmic Sobolev inequalities on path spaces, C. R. Acad. Sci. Paris Sér. I Math.321 (1995), no. 1, 97-102. Zbl0837.60053
  5. [5] Hélène Airault and Paul Malliavin, Intégration géométrique sur l'espace de Wiener, Bull. Sci. Math. (2) 112 (1988), 3-52 Zbl0656.60046
  6. [6] _, Integration by parts formulas and dilatation vector fields on elliptic probability spaces, Probab. Theory Related Fields106 (1996), no. 4, 447-494. Zbl0867.60031
  7. [7] Sergio Albeverio, Rémi Léandre, and Michael Röckner, Construction of a rotational invariant diffusion on the free loop space, C. R. Acad. Sci. Paris Sér. I Math.316 (1993), no. 3, 287-292. Zbl0776.58041
  8. [8] J.M. Bismut, Large deviations and the Malliavin calculus, Birkhäuser, Boston, 1984. Zbl0537.35003
  9. [9] J. Brüning and M. Lesch, Hilbert complexes, J. of Funct. Anal.108 (1992), 88- 132. Zbl0826.46065
  10. [10] R.H. Cameron, The first variation of an indefinite Wiener integral, Proc. Amer. Math. Soc.2 (1951), 914-924. Zbl0044.12103
  11. [11] Mireille Capitaine, Elton P. Hsu, and Michel Ledoux, Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces, Electron. Comm. Probab.2 (1997), 71-81 (electronic). Zbl0890.60045
  12. [12] Ana Bela Cruzeiro and Paul Malliavin, Repère mobile et géométrie riemanienne sur les espaces des chemins, C. R. Acad. Sci. Paris Sér. I Math.319 (1994), no. 8, 859-864. Zbl0809.60069
  13. [13] _, Courbures de l'espace de probabilités d'un mouvement brownien riemannien, C. R. Acad. Sci. Paris Sér. I Math.320 (1995), no. 5, 603-607. Zbl0842.58076
  14. [14] _, Renormalized differential geometry on path space: structural equation, curvature, J. Funct. Anal.139 (1996), no. 1, 119-181. Zbl0869.60060
  15. [15] B.K. Driver, The non-equivalence of Dirichlet forms on path spaces, Stochastic analysis on infinite-dimensional spaces (Baton Rouge, LA, 1994), Pitman Res. Notes Math. Ser., vol. 310, Longman Sci. Tech., Harlow (1994), 75-87. Zbl0819.31005
  16. [16] _, A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold, J. Funct. Anal.110 (1992), no. 2, 272-376. Zbl0765.60064
  17. [17] _, A Cameron-Martin type quasi-invariance theorem for pinned Brownian motion on a compact Riemannian manifold, Trans. of Amer. Math. Soc., 342 (1994), 375-395. Zbl0792.60013
  18. [18] _, Towards calculus and geometry on path spaces, Stochastic analysis (Ithaca, NY, 1993), Proc. Sympos. Pure Math., vol. 57, Amer. Math. Soc., Providence, RI (1995), 405-422. Zbl0821.60021
  19. [19] _, On the Kakutani-Itô-Segal-Gross and the Segal-Bargmann-Hall isomorphisms, J. of Funct. Anal.133 (1995), 69-128 Zbl0846.43001
  20. [20] _, Integration by parts and quasi-invariance for heat kernel measures on loop groups, J. Funct. Anal.149 (1997), no. 2, 470-547. Zbl0887.58062
  21. [21] _, Integration by parts for heat kernel measures revisited, J. Math. Pures Appl. (9) 76 (1997), no. 8, 703-737. Zbl0907.60052
  22. [22] _, A primer on Riemannian geometry and stochastic analysis on path spaces, ETH (Zürich, Switzerland) preprint series. This may be retrieved at http://math.ucsd.edu/~driver/prgsaps.html 
  23. [23] B.K. Driver and L. Gross, Hilbert spaces of holomorphic functions on complex Lie groups, in "New Trends in Stochastic Analysis" (Proceedings of the 1994 Taniguchi Symposium.), K. D. Elworthy, S. Kusuoka, I. Shigekawa, Eds. World Scientific, 1997, 76-106. 
  24. [24] Bruce K.Driver and Terry Lohrenz, Logarithmic Sobolev inequalities for pinned loop groups, J. Funct. Anal.140 (1996), no. 2, 381-448. Zbl0859.22012
  25. [25] Bruce K. Driver Röckner Michael Röckner, Construction of diffusions on path and loop spaces of compact Riemannian manifolds, C. R. Acad. Sci. Paris Sér. I Math.315 (1992), no. 5, 603-608. Zbl0771.58047
  26. [26] K.D. Elworthy, Stochastic Differential Equations on Manifolds, London Math. Soc. Lecture Note Series 70, Cambridge Univ. Press, Cambridge, England, 1982. Zbl0514.58001
  27. [27] K.D. Elworthy and Zhi-Ming Ma, Admissible vector fields and related diffusions on finite-dimensional manifolds, Ukraïn. Mat. Zh.49 (1997), no. 3, 410-423. Zbl0941.58023
  28. [28] K. David Elworthy, Yves Le Jan, and Xue-Mei Li, Integration by parts formulae for degenerate diffusion measures on path spaces and diffeomorphism groups, C. R. Acad. Sci. Paris Sér. I Math.323 (1996), no. 8, 921-926. Zbl0865.60046
  29. [29] Ognian Enchev and Daniel W. Stroock, Towards a Riemannian geometry on the path space over a Riemannian manifold, J. Funct. Anal.134 (1995), no. 2, 392- 416. Zbl0847.58080
  30. [30] _, Integration by parts for pinned Brownian motion, Math. Res. Lett.2 (1995), no. 2, 161-169. Zbl0845.58055
  31. [31] Shi Zan Fang, Inégalité du type de Poincaré sur l'espace des chemins riemanniens, C. R. Acad. Sci. Paris Sér. I Math.318 (1994), no. 3, 257-260. Zbl0805.60056
  32. [32] Shizan Fang, Rotations et quasi-invariance sur l'espace des chemins, Potential Anal.4 (1995), no. 1, 67-77. Zbl0813.60048
  33. [33] Shizan Fang and Jacques Franchi, Platitude de la structure riemannienne sur le groupe des chemins et identité d'énergie pour les intégrales stochastiques, C. R. Acad. Sci. Paris Sér. I Math.321 (1995), no. 10, 1371-1376. Zbl0846.60058
  34. [34] _, De Rham-Hodge-Kodaira operator on loop groups, J. Funct. Anal.148 (1997), no. 2, 391-407. Zbl0901.58067
  35. [35] _, A differentiable isomorphism between Wiener space and path group, Séminaire de Probabilités, XXXI, Lecture Notes in Math., vol. 1655, Springer, Berlin (1997), 54-61. Zbl0889.58084
  36. [36] Shi Zan Fang and Paul Malliavin, Stochastic analysis on the path space of a Riemannian manifold. I. Markovian stochastic calculus, J. Funct. Anal.118 (1993), no. 1, 249-274. Zbl0798.58080
  37. [37] E. Getzler, Dirichlet forms on loop space, Bull. Sc. math.2e serie 113 (1989), 151-174. Zbl0683.31002
  38. [38] _, An extension of Gross's log-Sobolev inequality for the loop space of a compact Lie group in Proc. Conf. on Probability Models in Mathematical Physics, Colorado Springs, 1990 (G. J. Morrow and W-S. Yang, Eds.), World Scientific, N.J. (1991), 73-97. 
  39. [39] M. Gordina, Holomorphic functions and the heat kernel measure on an infinite dimensional complex orthogonal group. J. of Potential Analysis, To appear. Zbl0960.46026
  40. [40] L. Gross, Logarithmic Sobolev inequalities on Lie groups, Illinois J. Math.36 (1992), 447-490. Zbl0761.46019
  41. [41] _, Logarithmic Sobolev inequalities on loop groups, J. of Funct. Anal.102 (1992), 268-313. Zbl0742.22003
  42. [42] _, Uniqueness of ground states for Schrödinger operators over loop groups, J. of Funct. Anal.112 (1993), 373-441. Zbl0774.60059
  43. [43] _, The homogeneous chaos over compact Lie groups, in "Stochastic Processes, A Festschrift in Honor of Gopinath Kallianpur", (S. Cambanis et al., Eds.), Springer-Verlag, New York (1993), 117-123. Zbl0783.60010
  44. [44] _, Harmonic analysis for the heat kernel measure on compact homogeneous spaces, in "Stochastic Analysis on Infinite Dimensional Spaces" (Kunita and Kuo, Eds.), Longman House, Essex England (1994), 99-110. Zbl0828.43001
  45. [45] _, Analysis on loop groups, in "Stochastic Analysis and Applications in Physics"A. I. Cardoso et al, Eds. (NATO ASI Series), Kluwer Acad. Publ.1994, 99-118. 
  46. [46] _, A local Peter-Weyl theorem, Trans. Amer. Math. Soc. To appear. Zbl0933.22017
  47. [47] _, Some norms on universal enveloping algebras, Canadian J. of Mathematics.50 (2) (1998), 356-377. Zbl0908.17007
  48. [48] L. Gross and P. Malliavin, Hall's transform and the Segal-Bargmann map, in "Ito's Stochastic calculus and Probability Theory", (Ikeda, Watanabe, Fukushima, Kunita, Eds.) Springer-Verlag, Tokyo, Berlin, New York (1996), 73-116. Zbl0869.22006
  49. [49] B. Hall, The Segal-Bargmann "coherent state" transform for compact Lie groups, J. of Funct. Anal.122 (1994), 103-151. Zbl0838.22004
  50. [50] _, The inverse Segal-Bargmann transform for compact Lie groups, J. of Funct. Anal.143 (1997), 98-116. Zbl0869.22005
  51. [51] Omar Hijab, Hermite functions on compact lie groups I., J. of Func. Anal.125 (1994), 480-492. Zbl0836.43016
  52. [52] _, Hermite functions on compact lie groups II., J. of Funct. Anal.133 (1995), 41-49. Zbl0843.43010
  53. [53] Elton P. Hsu, Quasi-invariance of the Wiener measure on the path space over a compact Riemannian manifold, J. Funct. Anal.134 (1995), no. 2, 417-450. Zbl0847.58082
  54. [54] _, Flows and quasi-invariance of the Wiener measure on path spaces, Stochastic analysis (Ithaca, NY, 1993), Proc. Sympos. Pure Math., vol. 57, Amer. Math. Soc., Providence, RI (1995), 265-279. Zbl0830.58035
  55. [55] _, Inégalités de Sobolev logarithmiques sur un espace de chemins, C. R. Acad. Sci. Paris Sér. I Math.320 (1995), no. 8, 1009-1012. Zbl0826.46023
  56. [56] _, Integration by parts in loop spaces, Math. Ann.309 (1997), no. 2, 331- 339. Zbl0899.58008
  57. [57] _, Logarithmic Sobolev inequalities on path spaces over Riemannian manifolds, Comm. Math. Phys.189 (1997), no. 1, 9-16. Zbl0892.58083
  58. [58] _, Stochastic Analysis on Manifolds, in the series Graduate Studies in Mathematics, American Mathematical Society, 1999. 
  59. [59] R. Léandre and J.R. Norris, Integration by parts and Cameron-Martin formulas for the free path space of a compact Riemannian manifold, Séminaire de Probabilités, XXXI, Lecture Notes in Math., vol. 1655, Springer, Berlin (1997), 16-23. Zbl0889.60058
  60. [60] T.J. Lyons and Z.M. Qian, A class of vector fields on path spaces, J. Funct. Anal.145 (1997), no. 1, 205-223. Zbl0877.58059
  61. [61] Paul Malliavin, Infinite-dimensional analysis, Bull. Sci. Math. (2) 117 (1993), no. 1, 63-90. Zbl0869.60046
  62. [62] _, Stochastic analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 313, Springer-Verlag, Berlin, 1997. Zbl0878.60001
  63. [63] M.-P. Malliavin and P. Malliavin, Integration on loop groups. I. Quasi-invariant measures, J. of Funct. Anal.93 (1990), 207-237 Zbl0715.22024
  64. [64] H.P. McKean, Jr., Stochastic Integrals, Academic Press, NY, 1969. Zbl0191.46603
  65. [65] Jeffrey Mitchell, Short time behavior of Hermite functions on compact Lie groups, Cornell Ph. D. Thesis, August, 1998. Zbl0928.22010
  66. [66] J.R. Norris, Twisted sheets, J. Funct. Anal.132 (1995), no. 2, 273-334. Zbl0848.60055
  67. [67] I. Shigekawa, Transformations of the Brownian motion on the Lie group, in "Proceedings, Taniguchi International Symposium on Stochastic Analysis, Katata and Kyoto, 1982" (Kiyosi Itô, Ed.), 409-422, North-Holland, Amsterdam, 1984. Zbl0563.58035
  68. [68] Daniel Stroock, Some thoughts about Riemannian structures on path space, Gaz. Math. (1996), no. 68, 31-45. 
  69. [69] _, Gaussian measures in traditional and not so traditional settings, Bull. Amer. Math. Soc. (N.S.) 33 (1996), no. 2, 135-155. Zbl0854.60081
  70. [70] D.W. Stroock and O. Zeitouni, Variations on a theme by Bismut, Astérisque (1996), no. 236, 291-301, Hommage à P.-A. Meyer et J. Neveu. Zbl0863.58065
  71. [71] A.S. Üstünel, An Introduction to Analysis on Wiener Space, Lecture Notes in Mathematics, 1610, Springer-Verlag, 1995. Zbl0837.60051
  72. [72] _, Stochastic Analysis on Lie groups, in "Progress in probability", vol.42Birkhauser, 1997. 
  73. [73] N.Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, 100. Cambridge Univ. Press, Cambridge, 1992, 156 p. Zbl0813.22003
  74. [74] Fengyu Wang, Logarithmic Sobolev inequalities for diffusion processes with application to path space, Chinese J. Appl. Probab. Statist.12 (1996), no. 3, 255-264. Zbl0953.60540
  75. [75] Norbert Wiener, Differential-space, J. of Math. and Phys.2 (1923), 131-174. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.