The motion of the free surface of a liquid

Hans Lindblad[1]

  • [1] University of California at San Diego

Séminaire Équations aux dérivées partielles (2000-2001)

  • Volume: 2000-2001, page 1-8

How to cite

top

Lindblad, Hans. "The motion of the free surface of a liquid." Séminaire Équations aux dérivées partielles 2000-2001 (2000-2001): 1-8. <http://eudml.org/doc/11025>.

@article{Lindblad2000-2001,
affiliation = {University of California at San Diego},
author = {Lindblad, Hans},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Euler equation; perfect incompressible; fluid; free boundary; energy estimates; tangential derivatives; linearization},
language = {eng},
pages = {1-8},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {The motion of the free surface of a liquid},
url = {http://eudml.org/doc/11025},
volume = {2000-2001},
year = {2000-2001},
}

TY - JOUR
AU - Lindblad, Hans
TI - The motion of the free surface of a liquid
JO - Séminaire Équations aux dérivées partielles
PY - 2000-2001
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2000-2001
SP - 1
EP - 8
LA - eng
KW - Euler equation; perfect incompressible; fluid; free boundary; energy estimates; tangential derivatives; linearization
UR - http://eudml.org/doc/11025
ER -

References

top
  1. M.S. Baouendi, C. Gouaouic, Remarks on the abstract form of nonlinear Cauchy-Kovalevsky theorems, Comm. Part. Diff. Eq. 2 (1977), 1151-1162 Zbl0391.35006MR481322
  2. D. Christodoulou, Self-Gravitating Relativistic Fluids: A Two-Phase Model, Arch. Rational Mech. Anal. 2 (1995), 343-400 Zbl0841.76097MR1346362
  3. D. Christodoulou, Oral Communication, (August 95) 
  4. D. Christodoulou, S. Klainerman, The Nonlineear Stability of the Minkowski space-time, (1993), Princeton Univ. Press Zbl0827.53055MR1316662
  5. D. Christodoulou, H. Lindblad, On the motion of the free surface of a liquid., Comm. Pure Appl. Math. 53 (2000), 1536-1602 Zbl1031.35116MR1780703
  6. D. Ebin, The equations of motion of a perfect fluid with free boundary are not well posed., Comm. Part. Diff. Eq. 10 (1987), 1175-1201 Zbl0631.76018MR886344
  7. D. Ebin, Oral communication, (November 1997) 
  8. H. Lindblad, Well posedness for the linearized motion of the free surface of a liquid, preprint (Jan 2001) Zbl1063.35523
  9. H. Lindblad, Well posedness for the motion of the free surface of a liquid, in preparation Zbl1038.35073
  10. V.I. Nalimov, The Cauchy-Poisson Problem (in Russian), Dynamika Splosh. Sredy 18 (1974), 104-210 MR609882
  11. T. Nishida, A note on a theorem of Nirenberg, J. Diff. Geometry 12 (1977), 629-633 Zbl0368.35007MR512931
  12. S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math. 130 (1997), 39-72 Zbl0892.76009MR1471885
  13. S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc. 12 (1999), 445-495 Zbl0921.76017MR1641609
  14. H. Yosihara, Gravity Waves on the Free Surface of an Incompressible Perfect Fluid, 18 (1982), 49-96 Zbl0493.76018MR660822

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.