Théorie des modèles et conjecture de Manin-Mumford
Séminaire Bourbaki (1999-2000)
- Volume: 42, page 137-159
- ISSN: 0303-1179
Access Full Article
topHow to cite
topBouscaren, Élisabeth. "Théorie des modèles et conjecture de Manin-Mumford." Séminaire Bourbaki 42 (1999-2000): 137-159. <http://eudml.org/doc/110272>.
@article{Bouscaren1999-2000,
author = {Bouscaren, Élisabeth},
journal = {Séminaire Bourbaki},
keywords = {model theory; diophantine geometry; difference fields; Manin-Mumford conjecture},
language = {fre},
pages = {137-159},
publisher = {Société Mathématique de France},
title = {Théorie des modèles et conjecture de Manin-Mumford},
url = {http://eudml.org/doc/110272},
volume = {42},
year = {1999-2000},
}
TY - JOUR
AU - Bouscaren, Élisabeth
TI - Théorie des modèles et conjecture de Manin-Mumford
JO - Séminaire Bourbaki
PY - 1999-2000
PB - Société Mathématique de France
VL - 42
SP - 137
EP - 159
LA - fre
KW - model theory; diophantine geometry; difference fields; Manin-Mumford conjecture
UR - http://eudml.org/doc/110272
ER -
References
top- [Ab] A. Abbes - Hauteurs et discrétude[d'après L. Szpiro, E. Ullmo et S. Zhang] , Sém. Bourbaki, vol. 1996/97, exp. n° 825, Astérisque245 (1997), 141-166. Zbl1014.11042MR1627110
- [AbrVo] D. Abramovich and F. Voloch - Towards a proof of the Mordell-Lang conjecture in characteristic p, Intern. Math. Research Notices (IMRN) No.2 (1992), 103-115. Zbl0787.14026MR1162230
- [Ax] J. Ax - The elementary theory of finite fields, Annals of Math.88 (1968), 239-271. Zbl0195.05701MR229613
- [Bo] É. Bouscaren ed. - Model Theory and Algebraic Geometry, Lecture Notes in Mathematics1696, Springer1998. Zbl0920.03046MR1678586
- [Bu] A. Buium - Intersections in jet spaces and a conjecture of Serge Lang, Annals of Math.136 (1992), 583-593. Zbl0817.14021MR1189865
- [Ch1] Z. Chatzidakis - Groups definable in ACFA, in Algebraic Model Theory, B. Hart, A. Lachlan and M. Valeriote eds., NATO ASI Series, Kluwer Academic Publishers1997. Zbl0884.03038MR1481438
- [Ch2] Z. Chatzidakis - A survey on the model theory of difference fields, in Model Theory, Algebra and Geometry, D. Haskell and C. Steinhorn ed., MSRI Publications2000, 65-96. Zbl0961.03035MR1773703
- [ChHr] Z. Chatzidakis and E. Hrushovski - The model theory of difference fields, Transactions of the A.M.S, Vol. 351 (1999), 2997-3071. Zbl0922.03054MR1652269
- [ChHrPe] Z. Chatzidakis, E. Hrushovski and Y. Peterzil - The model theory of difference fields II, preprint 1999. MR1652269
- [Coh] R.M. Cohn - Difference algebra, Tracts in Mathematics17, Interscience Pub.1965. Zbl0127.26402MR205987
- [Col] R. Coleman - p-adic integrals and torsion points on curves, Annals of Math.121 (1985), 111-168. Zbl0578.14038MR782557
- [DaPh] S. David ET P. Philippon - Minorations des hauteurs normalisées des sous-variétés de variétés abéliennes, in International Conference On Discrete Mathematics and Number Theory (Tiruchiparelli, 1996), K. Murty and M. Waldschmidt eds., Contemp. Math., 1998, 3-17. Zbl0899.11027MR1478502
- [Du] J.L. Duret - Les corps faiblement algébriquement clos non séparablement clos ont la propriété d'indépendance, in Model Theory of Algebra and Arithmetic, L. Pacholski et al. ed., Lecture Notes in mathematics834, Springer1980, 135-157. Zbl0489.03009MR606784
- [Fa] G. Faltings - The general case of Lang's conjecture, in Symposium in Algebraic Geometry, V. Christante and W. Messing eds., Perspectives in Math.15, Academie Press , 1994, 175-182. Zbl0823.14009MR1307396
- [Fu] W. Fulton - Intersection Theory, Ergebnisse2, Springer1984. Zbl0541.14005MR732620
- [Go] J.B. Goode - H.L.M. (Hrushovski-Lang-Mordell), Sém. Bourbaki, vol. 1995/96, exp. n° 811, Astérisque241 (1997), 179-194. Zbl0957.03512MR1472539
- [Hi1] M. Hindry - Autour d'une conjecture de Serge Lang, Invent. Math.94 (1988), 575-603. Zbl0638.14026MR969244
- [Hi2] M. Hindry - Introduction to abelian varieties and the Mordell-Lang conjecture, in Model Theory and Algebraic Geometry, E. Bouscaren ed., Lecture Notes in Mathematics1696, Springer1998. Zbl0925.14025MR1678527
- [Hr1] E. Hrushovski - The Mordell-Lang conjecture for function fields, Journal of the AMS9 (1996), 667-690. Zbl0864.03026MR1333294
- [Hr2] E. Hrushovski - The Manin-Mumford conjecture and the model theory of difference fields, preprint 1995, à paraître dans Annals of Pure and Applied Logic. Zbl0987.03036MR1854232
- [Hr3] E. Hrushovski - The first-order theory of the Frobenius, preprint 1995.
- [HrPi1] E. Hrushovski and A. Pillay - Weakly normal groups, in Logic Colloquium '85, North Holland1987, 233-244. Zbl0636.03028MR895647
- [HrPi2] E. Hrushovski and A. Pillay - Groups definable in local fields and pseudo-finite fields, Israel J. Math.85 (1994), 203-262. Zbl0804.03024MR1264346
- [HrSo] E. Hrushovski and Z. Sokolović - Minimal subsets of differentially closed fields, à paraître dans les Transactions of the AMS.
- [HrZi] E. Hrushovski and B. Zil'ber - Zariski Geometries, Journal of the A.M.S.9 (1996), 1-56. Zbl0843.03020MR1311822
- [La1] S. Lang - Division points on curves, Ann. Mat. Pura Appl. (4) 70 (1965), 229-234. Zbl0151.27401MR190146
- [La2] S. Lang - Number Theory III, Diophantine Geometry, volume 60, Encyclopaedia of Mathematical Sciences, Springer1991. Zbl0744.14012MR1112552
- [Ma1] A. Macintyre - Generic automorphisms of fields, Annals of Pure and Applied Logic88, vol.2-3 (1997), 165-180. Zbl0891.03015MR1600899
- [Ma2] A. Macintyre - Non-standard Frobenius, en préparation.
- [Maz] B. Mazur - Abelian varieties and the Mordell-Lang Conjecture, in Model Theory, Algebra and Geometry, D. Haskell and C. Steinhorn ed., MSRI Publications2000. Zbl0990.14006MR1773708
- [McQ] M. Mcquillan - Division points on semi-abelian varieties, Invent. Math.120 (1995), 143-159. Zbl0848.14022MR1323985
- [Mr] D. Marker - Zariski geometries, in Model Theory and Algebraic Geometry, É. Bouscaren ed., Lecture Notes in Mathematics1696, Springer1998. Zbl0925.03171MR1678586
- [Mu] D. Mumford - Abelian varieties, Oxford University Press, Oxford1985. Zbl0583.14015MR282985
- [Pi1] A. Pillay - The model-theoretic content of Lang's conjecture in Model Theory and Algebraic Geometry, É. Bouscaren ed., Lecture Notes in Mathematics1696, Springer1998. Zbl0925.03170MR1678586
- [Pi2] A. Pillay - ACFA and the Manin-Mumford conjecture, in Algebraic Model Theory, B. Hart, A. Lachlan and M. Valeriote eds., NATO ASI Series, Kluwer Academic Publishers1997. Zbl0884.03039MR1481445
- [Pi3] A. Pillay - Model Theory and diophantine geometry, Bull. Am. Math. Soc.34 (1997), 405-422. Zbl0884.03040MR1458425
- [Ra1] M. Raynaud - Courbes sur une variété abélienne et points de torsion, Invent. Math.71 (1983), 207-233. Zbl0564.14020MR688265
- [Ra2] M. Raynaud - Sous-variétés d'une variété abélienne et points de torsion, in Arithmetic and Geometry, vol.I, M. Artin and J. Tate eds., Birkhäuser1983, 327-352. Zbl0581.14031MR717600
- [Sc1] T. Scanlon - p-adic distance from torsion points of semi-abelian varieties, Journal für dir Reine und Angewandte Mathematik499 (1998), 225-236. Zbl0932.11041MR1631061
- [Sc2] T. Scanlon - The conjecture of Tate and Voloch on p-adic proximity to torsion, Intern. Math. Research Notices (IMRN) No. 17 (1999), 909-914. Zbl0986.11038MR1717649
- [Sc3] T. Scanlon - Diophantine geometry of the torsion of a Drinfeld module, preprint 1999. MR1939133
- [Se] J.-P. Serre - Oeuvres, Collected papers, Volume IV, 1985-1998, Springer2000. Zbl1110.01012
- [TaVo] J. Tate and J.F. Voloch - Linear forms in p-adic roots of unity, International Mathematics Research Notices (IMRN) No.12 (1996), 589-601. Zbl0893.11015MR1405976
- [Voj] P. Vojta - Integral points on subvarieties of semi-abelian varieties, Invent. Math.126 (1996), 133-181. Zbl1011.11040MR1408559
- [We] A. Weil - Courbes algébriques et variétés abéliennes, Hermann1971. Zbl0208.49202
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.