Théorie des modèles et conjecture de Manin-Mumford

Élisabeth Bouscaren

Séminaire Bourbaki (1999-2000)

  • Volume: 42, page 137-159
  • ISSN: 0303-1179

How to cite

top

Bouscaren, Élisabeth. "Théorie des modèles et conjecture de Manin-Mumford." Séminaire Bourbaki 42 (1999-2000): 137-159. <http://eudml.org/doc/110272>.

@article{Bouscaren1999-2000,
author = {Bouscaren, Élisabeth},
journal = {Séminaire Bourbaki},
keywords = {model theory; diophantine geometry; difference fields; Manin-Mumford conjecture},
language = {fre},
pages = {137-159},
publisher = {Société Mathématique de France},
title = {Théorie des modèles et conjecture de Manin-Mumford},
url = {http://eudml.org/doc/110272},
volume = {42},
year = {1999-2000},
}

TY - JOUR
AU - Bouscaren, Élisabeth
TI - Théorie des modèles et conjecture de Manin-Mumford
JO - Séminaire Bourbaki
PY - 1999-2000
PB - Société Mathématique de France
VL - 42
SP - 137
EP - 159
LA - fre
KW - model theory; diophantine geometry; difference fields; Manin-Mumford conjecture
UR - http://eudml.org/doc/110272
ER -

References

top
  1. [Ab] A. Abbes - Hauteurs et discrétude[d'après L. Szpiro, E. Ullmo et S. Zhang] , Sém. Bourbaki, vol. 1996/97, exp. n° 825, Astérisque245 (1997), 141-166. Zbl1014.11042MR1627110
  2. [AbrVo] D. Abramovich and F. Voloch - Towards a proof of the Mordell-Lang conjecture in characteristic p, Intern. Math. Research Notices (IMRN) No.2 (1992), 103-115. Zbl0787.14026MR1162230
  3. [Ax] J. Ax - The elementary theory of finite fields, Annals of Math.88 (1968), 239-271. Zbl0195.05701MR229613
  4. [Bo] É. Bouscaren ed. - Model Theory and Algebraic Geometry, Lecture Notes in Mathematics1696, Springer1998. Zbl0920.03046MR1678586
  5. [Bu] A. Buium - Intersections in jet spaces and a conjecture of Serge Lang, Annals of Math.136 (1992), 583-593. Zbl0817.14021MR1189865
  6. [Ch1] Z. Chatzidakis - Groups definable in ACFA, in Algebraic Model Theory, B. Hart, A. Lachlan and M. Valeriote eds., NATO ASI Series, Kluwer Academic Publishers1997. Zbl0884.03038MR1481438
  7. [Ch2] Z. Chatzidakis - A survey on the model theory of difference fields, in Model Theory, Algebra and Geometry, D. Haskell and C. Steinhorn ed., MSRI Publications2000, 65-96. Zbl0961.03035MR1773703
  8. [ChHr] Z. Chatzidakis and E. Hrushovski - The model theory of difference fields, Transactions of the A.M.S, Vol. 351 (1999), 2997-3071. Zbl0922.03054MR1652269
  9. [ChHrPe] Z. Chatzidakis, E. Hrushovski and Y. Peterzil - The model theory of difference fields II, preprint 1999. MR1652269
  10. [Coh] R.M. Cohn - Difference algebra, Tracts in Mathematics17, Interscience Pub.1965. Zbl0127.26402MR205987
  11. [Col] R. Coleman - p-adic integrals and torsion points on curves, Annals of Math.121 (1985), 111-168. Zbl0578.14038MR782557
  12. [DaPh] S. David ET P. Philippon - Minorations des hauteurs normalisées des sous-variétés de variétés abéliennes, in International Conference On Discrete Mathematics and Number Theory (Tiruchiparelli, 1996), K. Murty and M. Waldschmidt eds., Contemp. Math., 1998, 3-17. Zbl0899.11027MR1478502
  13. [Du] J.L. Duret - Les corps faiblement algébriquement clos non séparablement clos ont la propriété d'indépendance, in Model Theory of Algebra and Arithmetic, L. Pacholski et al. ed., Lecture Notes in mathematics834, Springer1980, 135-157. Zbl0489.03009MR606784
  14. [Fa] G. Faltings - The general case of Lang's conjecture, in Symposium in Algebraic Geometry, V. Christante and W. Messing eds., Perspectives in Math.15, Academie Press , 1994, 175-182. Zbl0823.14009MR1307396
  15. [Fu] W. Fulton - Intersection Theory, Ergebnisse2, Springer1984. Zbl0541.14005MR732620
  16. [Go] J.B. Goode - H.L.M. (Hrushovski-Lang-Mordell), Sém. Bourbaki, vol. 1995/96, exp. n° 811, Astérisque241 (1997), 179-194. Zbl0957.03512MR1472539
  17. [Hi1] M. Hindry - Autour d'une conjecture de Serge Lang, Invent. Math.94 (1988), 575-603. Zbl0638.14026MR969244
  18. [Hi2] M. Hindry - Introduction to abelian varieties and the Mordell-Lang conjecture, in Model Theory and Algebraic Geometry, E. Bouscaren ed., Lecture Notes in Mathematics1696, Springer1998. Zbl0925.14025MR1678527
  19. [Hr1] E. Hrushovski - The Mordell-Lang conjecture for function fields, Journal of the AMS9 (1996), 667-690. Zbl0864.03026MR1333294
  20. [Hr2] E. Hrushovski - The Manin-Mumford conjecture and the model theory of difference fields, preprint 1995, à paraître dans Annals of Pure and Applied Logic. Zbl0987.03036MR1854232
  21. [Hr3] E. Hrushovski - The first-order theory of the Frobenius, preprint 1995. 
  22. [HrPi1] E. Hrushovski and A. Pillay - Weakly normal groups, in Logic Colloquium '85, North Holland1987, 233-244. Zbl0636.03028MR895647
  23. [HrPi2] E. Hrushovski and A. Pillay - Groups definable in local fields and pseudo-finite fields, Israel J. Math.85 (1994), 203-262. Zbl0804.03024MR1264346
  24. [HrSo] E. Hrushovski and Z. Sokolović - Minimal subsets of differentially closed fields, à paraître dans les Transactions of the AMS. 
  25. [HrZi] E. Hrushovski and B. Zil'ber - Zariski Geometries, Journal of the A.M.S.9 (1996), 1-56. Zbl0843.03020MR1311822
  26. [La1] S. Lang - Division points on curves, Ann. Mat. Pura Appl. (4) 70 (1965), 229-234. Zbl0151.27401MR190146
  27. [La2] S. Lang - Number Theory III, Diophantine Geometry, volume 60, Encyclopaedia of Mathematical Sciences, Springer1991. Zbl0744.14012MR1112552
  28. [Ma1] A. Macintyre - Generic automorphisms of fields, Annals of Pure and Applied Logic88, vol.2-3 (1997), 165-180. Zbl0891.03015MR1600899
  29. [Ma2] A. Macintyre - Non-standard Frobenius, en préparation. 
  30. [Maz] B. Mazur - Abelian varieties and the Mordell-Lang Conjecture, in Model Theory, Algebra and Geometry, D. Haskell and C. Steinhorn ed., MSRI Publications2000. Zbl0990.14006MR1773708
  31. [McQ] M. Mcquillan - Division points on semi-abelian varieties, Invent. Math.120 (1995), 143-159. Zbl0848.14022MR1323985
  32. [Mr] D. Marker - Zariski geometries, in Model Theory and Algebraic Geometry, É. Bouscaren ed., Lecture Notes in Mathematics1696, Springer1998. Zbl0925.03171MR1678586
  33. [Mu] D. Mumford - Abelian varieties, Oxford University Press, Oxford1985. Zbl0583.14015MR282985
  34. [Pi1] A. Pillay - The model-theoretic content of Lang's conjecture in Model Theory and Algebraic Geometry, É. Bouscaren ed., Lecture Notes in Mathematics1696, Springer1998. Zbl0925.03170MR1678586
  35. [Pi2] A. Pillay - ACFA and the Manin-Mumford conjecture, in Algebraic Model Theory, B. Hart, A. Lachlan and M. Valeriote eds., NATO ASI Series, Kluwer Academic Publishers1997. Zbl0884.03039MR1481445
  36. [Pi3] A. Pillay - Model Theory and diophantine geometry, Bull. Am. Math. Soc.34 (1997), 405-422. Zbl0884.03040MR1458425
  37. [Ra1] M. Raynaud - Courbes sur une variété abélienne et points de torsion, Invent. Math.71 (1983), 207-233. Zbl0564.14020MR688265
  38. [Ra2] M. Raynaud - Sous-variétés d'une variété abélienne et points de torsion, in Arithmetic and Geometry, vol.I, M. Artin and J. Tate eds., Birkhäuser1983, 327-352. Zbl0581.14031MR717600
  39. [Sc1] T. Scanlon - p-adic distance from torsion points of semi-abelian varieties, Journal für dir Reine und Angewandte Mathematik499 (1998), 225-236. Zbl0932.11041MR1631061
  40. [Sc2] T. Scanlon - The conjecture of Tate and Voloch on p-adic proximity to torsion, Intern. Math. Research Notices (IMRN) No. 17 (1999), 909-914. Zbl0986.11038MR1717649
  41. [Sc3] T. Scanlon - Diophantine geometry of the torsion of a Drinfeld module, preprint 1999. MR1939133
  42. [Se] J.-P. Serre - Oeuvres, Collected papers, Volume IV, 1985-1998, Springer2000. Zbl1110.01012
  43. [TaVo] J. Tate and J.F. Voloch - Linear forms in p-adic roots of unity, International Mathematics Research Notices (IMRN) No.12 (1996), 589-601. Zbl0893.11015MR1405976
  44. [Voj] P. Vojta - Integral points on subvarieties of semi-abelian varieties, Invent. Math.126 (1996), 133-181. Zbl1011.11040MR1408559
  45. [We] A. Weil - Courbes algébriques et variétés abéliennes, Hermann1971. Zbl0208.49202

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.