On the n ! -conjecture

Claudio Procesi

Séminaire Bourbaki (2001-2002)

  • Volume: 44, page 103-115
  • ISSN: 0303-1179

How to cite


Procesi, Claudio. "On the $n!$-conjecture." Séminaire Bourbaki 44 (2001-2002): 103-115. <http://eudml.org/doc/110300>.

author = {Procesi, Claudio},
journal = {Séminaire Bourbaki},
keywords = {Hilbert schemes of points; symmetric functions; representations of the symmetric group},
language = {eng},
pages = {103-115},
publisher = {Société Mathématique de France},
title = {On the $n!$-conjecture},
url = {http://eudml.org/doc/110300},
volume = {44},
year = {2001-2002},

AU - Procesi, Claudio
TI - On the $n!$-conjecture
JO - Séminaire Bourbaki
PY - 2001-2002
PB - Société Mathématique de France
VL - 44
SP - 103
EP - 115
LA - eng
KW - Hilbert schemes of points; symmetric functions; representations of the symmetric group
UR - http://eudml.org/doc/110300
ER -


  1. [AB] M. Atiyah & R. Bott — A Lefschetz fixed point formula for elliptic differential operators, Bull. Amer. Math. Soc.72 (1966), p. 245-250. Zbl0151.31801MR190950
  2. [BKR] T. Bridgeland, A. King & M. Reid — Mukai implies McKay: the McKay correspondence as an equivalence of derived categories, Electronic preprint, arXiv:math.AG/9908027, 1999. 
  3. [Ch] J. Cheah — Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998), p. 39-90. Zbl0904.14001MR1616606
  4. [F] J. Fogarty — Algebraic families on an algebraic surface, Amer. J. Math.90 (1968), p. 511-521. Zbl0176.18401MR237496
  5. [GH] A. Garsia & M. Haiman — A graded representation model for Macdonald's polynomials, Proc. Nat. Acad. Sci. U.S.A.90 (1993), no. 8, p. 3607-3610. Zbl0831.05062MR1214091
  6. [GH1] _, A remarkable q - t-Catalan sequence and q-Lagrange inversion, J. Algebraic Comb.5 (1996), no. 3, p. 191-244. Zbl0853.05008MR1394305
  7. [GP] A. Garsia & C. Procesi — On certain graded Sn-modules and the q-Kostka polynomials, Adv. Math.94 (1992), no. 1, p. 82-138. Zbl0797.20012MR1168926
  8. [H] M. Haiman — Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin.5 (1994), no. 1, p. 17-76. Zbl0803.13010MR1256101
  9. [H1] _, Macdonald polynomials and geometry, in New perspectives in geometric combinatorics (Billera, Björner, Greene, Simion & Stanley, eds.), vol. 38, M.S.R.I. Publications, 1999, p. 207-254. MR1731818
  10. [H2] _, Hilbert schemes, polygraphs, and the Macdonald positivity conjecture, Journal of the A.M.S. (to appear), 2001. Zbl1009.14001MR1839919
  11. [H3] _, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, preprint, 2001. 
  12. [IN] Y. Ito & I. Nakamura — McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A Math. Sci.72 (1996), no. 7, p. 135-138. Zbl0881.14002MR1420598
  13. [M] I.G. Macdonald — A new class of symmetric functions, in Actes du 20ème séminaire lotharingien, vol. 372/S-20, Publ. I.R.M.A.Strasbourg, 1988, p. 131-171. Zbl0962.05507
  14. [M1] _, Symmetric functions and Hall polynomials, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995. Zbl0824.05059MR1354144
  15. [N] H. Nakajima — Lectures on Hilbert schemes of points on surfaces, American Math. Society, Providence RI, 1999. Zbl0949.14001MR1711344

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.