On the -conjecture
Séminaire Bourbaki (2001-2002)
- Volume: 44, page 103-115
- ISSN: 0303-1179
Access Full Article
topHow to cite
topProcesi, Claudio. "On the $n!$-conjecture." Séminaire Bourbaki 44 (2001-2002): 103-115. <http://eudml.org/doc/110300>.
@article{Procesi2001-2002,
author = {Procesi, Claudio},
journal = {Séminaire Bourbaki},
keywords = {Hilbert schemes of points; symmetric functions; representations of the symmetric group},
language = {eng},
pages = {103-115},
publisher = {Société Mathématique de France},
title = {On the $n!$-conjecture},
url = {http://eudml.org/doc/110300},
volume = {44},
year = {2001-2002},
}
TY - JOUR
AU - Procesi, Claudio
TI - On the $n!$-conjecture
JO - Séminaire Bourbaki
PY - 2001-2002
PB - Société Mathématique de France
VL - 44
SP - 103
EP - 115
LA - eng
KW - Hilbert schemes of points; symmetric functions; representations of the symmetric group
UR - http://eudml.org/doc/110300
ER -
References
top- [AB] M. Atiyah & R. Bott — A Lefschetz fixed point formula for elliptic differential operators, Bull. Amer. Math. Soc.72 (1966), p. 245-250. Zbl0151.31801MR190950
- [BKR] T. Bridgeland, A. King & M. Reid — Mukai implies McKay: the McKay correspondence as an equivalence of derived categories, Electronic preprint, arXiv:math.AG/9908027, 1999.
- [Ch] J. Cheah — Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998), p. 39-90. Zbl0904.14001MR1616606
- [F] J. Fogarty — Algebraic families on an algebraic surface, Amer. J. Math.90 (1968), p. 511-521. Zbl0176.18401MR237496
- [GH] A. Garsia & M. Haiman — A graded representation model for Macdonald's polynomials, Proc. Nat. Acad. Sci. U.S.A.90 (1993), no. 8, p. 3607-3610. Zbl0831.05062MR1214091
- [GH1] _, A remarkable q - t-Catalan sequence and q-Lagrange inversion, J. Algebraic Comb.5 (1996), no. 3, p. 191-244. Zbl0853.05008MR1394305
- [GP] A. Garsia & C. Procesi — On certain graded Sn-modules and the q-Kostka polynomials, Adv. Math.94 (1992), no. 1, p. 82-138. Zbl0797.20012MR1168926
- [H] M. Haiman — Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin.5 (1994), no. 1, p. 17-76. Zbl0803.13010MR1256101
- [H1] _, Macdonald polynomials and geometry, in New perspectives in geometric combinatorics (Billera, Björner, Greene, Simion & Stanley, eds.), vol. 38, M.S.R.I. Publications, 1999, p. 207-254. MR1731818
- [H2] _, Hilbert schemes, polygraphs, and the Macdonald positivity conjecture, Journal of the A.M.S. (to appear), 2001. Zbl1009.14001MR1839919
- [H3] _, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, preprint, 2001.
- [IN] Y. Ito & I. Nakamura — McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A Math. Sci.72 (1996), no. 7, p. 135-138. Zbl0881.14002MR1420598
- [M] I.G. Macdonald — A new class of symmetric functions, in Actes du 20ème séminaire lotharingien, vol. 372/S-20, Publ. I.R.M.A.Strasbourg, 1988, p. 131-171. Zbl0962.05507
- [M1] _, Symmetric functions and Hall polynomials, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995. Zbl0824.05059MR1354144
- [N] H. Nakajima — Lectures on Hilbert schemes of points on surfaces, American Math. Society, Providence RI, 1999. Zbl0949.14001MR1711344
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.