The PCP theorem

Bernard Chazelle

Séminaire Bourbaki (2001-2002)

  • Volume: 44, page 19-36
  • ISSN: 0303-1179

How to cite

top

Chazelle, Bernard. "The PCP theorem." Séminaire Bourbaki 44 (2001-2002): 19-36. <http://eudml.org/doc/110305>.

@article{Chazelle2001-2002,
author = {Chazelle, Bernard},
journal = {Séminaire Bourbaki},
language = {eng},
pages = {19-36},
publisher = {Société Mathématique de France},
title = {The PCP theorem},
url = {http://eudml.org/doc/110305},
volume = {44},
year = {2001-2002},
}

TY - JOUR
AU - Chazelle, Bernard
TI - The PCP theorem
JO - Séminaire Bourbaki
PY - 2001-2002
PB - Société Mathématique de France
VL - 44
SP - 19
EP - 36
LA - eng
UR - http://eudml.org/doc/110305
ER -

References

top
  1. [1] S. Arora — Probabilistic Checking of Proofs and the Hardness of Approximation Problems, Ph.D. Thesis, UC Berkeley, 1994, also available as http://www.cs.princeton.edu/~arora. 
  2. [2] S. Arora & C. Lund — Hardness of approximations, in Approximation Algorithms for NP-hard Problems (D. Hochbaum, ed.), PWS Publishing, 1996. 
  3. [3] S. Arora, C. Lund, R. Motwani, M. Sudan & M. Szegedy - Proof verification and the hardness of approximation problems, J. ACM45 (1998), p. 501-555. Zbl1065.68570MR1639346
  4. [4] S. Arora & M. Safra — Probabilistic checking of proofs: a new characterization of NP, J. ACM45 (1998), p. 70-122. Zbl0903.68076MR1614328
  5. [5] L. Babai — Trading group theory for randomness, in Proc. 17th Annual ACM, Symp. Theory Comput., 1985, p. 421-429. 
  6. [6] L. Babai, L. Fortnow, L. Levin & M. Szegedy — Checking computations in polylogarithmic time, in Proc. 23rd Annual ACM Symp. Theory Comput., 1991, p. 21-31. 
  7. [7] L. Babai, L. Fortnow & C. Lund — Non-deterministic exponential time has two-prover interactive protocols, Computational Complexity1 (1991), p. 3-40. Zbl0774.68041MR1113533
  8. [8] M. Bellare, O. Goldreich & M. Sudan - Free bits, PCPs and nonapproximability—towards tight results, SIAM J. Comput.27 (1998), p. 804-915. Zbl0912.68041MR1612644
  9. [9] M. Ben-Or, S. Goldwasser, J. Kilian & A. Wigderson — Multi-prover interactive proofs: how to remove intractability, in Proc. 20th Annual ACM Symp. Theory Comput., 1988, p. 113-131. 
  10. [10] M. Blum & S. Kannan — Designing programs that check their work, in Proc. 21st Annual ACM Symp. Theory Comput., 1989, p. 86-97. Zbl0886.68046
  11. [11] M. Blum, M. Luby & R. Rubinfeld — Self-testing/correcting with applications to numerical problems, J. Comp. Sys. Sci.47 (1993), p. 549-595. Zbl0795.68131MR1248868
  12. [12] D.-Z. Du & K.-I. Ko - Theory of Computational Complexity, Wiley-Interscience, 2000. Zbl1001.68050MR1789501
  13. [13] U. Feige, S. Goldwasser, L. Lovasz, S. Safra & M. Szegedy - Interactive proofs and the hardness of approximating cliques, J. ACM43 (1996), p. 268-292. Zbl0882.68129MR1408323
  14. [14] L. Fortnow, J. Rompel & M. Sipser — On the power of multi-prover interactive protocols, Theoret. Comput. Sci.134 (1994), p. 545-557. Zbl0938.68824MR1304678
  15. [15] M. Garey & D. Johnson — Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York, 1979. Zbl0411.68039MR519066
  16. [16] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan & A. Wigderson - Self-testing/correcting for polynomials and approximate functions, in Proc. 23rd Annual ACM Symp. Theory Comput., 1991, p. 32-42. 
  17. [17] M.X. Goemans & D.P. Williamson — Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM42 (1995), p. 1115-1145. Zbl0885.68088MR1412228
  18. [18] O. Goldreich — Modern Cryptography, Probabilistic Proofs and Pseudorandomness, Algorithms and Combinatorics, vol. 17, Springer, 1999. Zbl0907.94002MR1665938
  19. [19] O. Goldreich, S. Micali & A. Wigderson — Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems, J. ACM38 (1991), p. 691-729. Zbl0799.68101MR1125927
  20. [20] S. Goldwasser, S. Micali & C. Rackoff — The knowledge complexity of interactive proof systems, SIAM J. Comput.18 (1989), p. 186-208. Zbl0677.68062MR978174
  21. [21] V. Guruswami, D. Lewin, M. Sudan & L. Trevisan — A tight characterization of NP with 3 query PCPs, in Proc. 39th Annual IEEE Symp. Found. Comput. Sci., 1998, also available as ECCC Technical Report TR98-034, p. 8-17. 
  22. [22] J. Håstad — Some optimal inapproximability results, in Proc. 29th Annual ACM Symp. Theory Comput., 1997, also available as ECCC Technical Report TR97- 037, p. 1-10. Zbl0963.68193MR1715618
  23. [23] _, Clique is hard to approximate within n1-∈, Acta Mathematica182 (1999), p. 105-142. Zbl0989.68060
  24. [24] C. Lund, L. Fortnow, H. Karloff & N. Nisan — Algebraic methods for interactive proof systems, J. ACM39 (1992), p. 859-868. Zbl0799.68097MR1187215
  25. [25] E.W. Mayr, H.J. Promel & A. Steger — Lectures on Proof Verification and Approximation Algorithms, LNCS, vol. 1367, Springer Verlag, 1998. Zbl1043.68579MR1640479
  26. [26] C.H. Papadimitriou — Computational Complexity, Addison Wesley, 1994. Zbl0833.68049MR1251285
  27. [27] R. Raz — A parallel repetition theorem, SIAM J. Comput.27 (1998), p. 763-803. Zbl0911.68082MR1612640
  28. [28] R. Rubinfeld & M. Sudan - Self-testing polynomial functions efficiently and over rational Domains, in Proc. 3rd Annual ACM/SIAM Symp. Discrete Algorithms, 1992, p. 23-32. Zbl0834.68076MR1173877
  29. [29] _, Robust characterizations of polynomials with applications to program testing, SIAM J. Comput.25 (1996), p. 252-271. Zbl0844.68062MR1379300
  30. [30] A. Shamir — IP = PSPACE, J. ACM39 (1992), p. 869-877. Zbl0799.68096MR1187216
  31. [31] M. Sipser — Introduction to the Theory of Computation, PWS Publishing, 1997. Zbl1169.68300
  32. [32] M. Sudan - Efficient Checking of Polynomials and Proofs and the Hardness of Approximation Problems, in ACM Distinguished Dissertation Series for 1993, Springer, 1996. Zbl0861.68042MR1442261
  33. [33] L. Trevisan, G.B. Sorkin, M. Sudan & D.P. Williamson — Gadgets, Approximation, and Linear Programming, SIAM J. Comput.29 (2000), p. 2074- 2097. Zbl0957.68048MR1756405

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.