Finite group actions on acyclic -complexes
Séminaire Bourbaki (2001-2002)
- Volume: 44, page 1-17
- ISSN: 0303-1179
Access Full Article
topHow to cite
topAdem, Alejandro. "Finite group actions on acyclic $2$-complexes." Séminaire Bourbaki 44 (2001-2002): 1-17. <http://eudml.org/doc/110306>.
@article{Adem2001-2002,
author = {Adem, Alejandro},
journal = {Séminaire Bourbaki},
keywords = {fixed point free action; acyclic complex; finite simple group; classification theorem; group of Lie type; sporadic simple group},
language = {eng},
pages = {1-17},
publisher = {Société Mathématique de France},
title = {Finite group actions on acyclic $2$-complexes},
url = {http://eudml.org/doc/110306},
volume = {44},
year = {2001-2002},
}
TY - JOUR
AU - Adem, Alejandro
TI - Finite group actions on acyclic $2$-complexes
JO - Séminaire Bourbaki
PY - 2001-2002
PB - Société Mathématique de France
VL - 44
SP - 1
EP - 17
LA - eng
KW - fixed point free action; acyclic complex; finite simple group; classification theorem; group of Lie type; sporadic simple group
UR - http://eudml.org/doc/110306
ER -
References
top- [1] M. Aschbacher — Finite Group Theory, Cambridge Studies in Advanced Mathematics, vol. 10, CUP, 2000. Zbl0997.20001MR1777008
- [2] M. Aschbacher & Y. Segev — A fixed point theorem for groups acting on finite 2-dimensional acyclic simplicial complexes, Proc. London Math. Soc. (3) 67 (1993), p. 329-354. Zbl0834.57022MR1226605
- [3] M. Aschbacher & S. Smith — Work in progress: a classification of quasithin groups, available at http://www.math.uic.edu/~smiths/papers/quasithin/quasithin.dvi.
- [4] G. Bredon — Introduction to Compact Transformation Groups, Academic Press, 1972. Zbl0246.57017MR413144
- [5] K. Brown — Cohomology of Groups, GTM, vol. 87, Springer-Verlag, 1982. Zbl0584.20036MR672956
- [6] R. Carter — Simple Groups of Lie Type, Wiley, 1972. Zbl0723.20006MR407163
- [7] E. Floyd & R. Richardson — An action of a finite group on an n-cell without stationary points, Bull. Amer. Math. Soc. (N.S.)65 (1959), p. 73-76. Zbl0088.15302MR100848
- [8] D. Gorenstein — Finite Groups, Harper and Row, 1969. Zbl0185.05701MR231903
- [9] _, The Classification of Finite Simple Groups, Plenum Press, New York, 1983.
- [10] R. Griess — Twelve Sporadic Groups, Springer-Verlag, 1998. Zbl0908.20007MR1707296
- [11] B. Huppert & N. Blackburn — Finite Groups III, Springer-Verlag, 1982. Zbl0514.20002MR662826
- [12] R. Kirby & M. Scharlemann — Eight faces of the Poincaré homology 3-sphere, Geometric Topology, Academic Press, 1979. Zbl0469.57006MR537730
- [13] R. Oliver — Fixed point sets of group actions on finite acyclic complexes, Comment. Math. Helv.50 (1975), p. 155-177. Zbl0304.57020MR375361
- [14] _, Smooth compact group actions on disks, Math. Z.149 (1976), p. 79-96. Zbl0334.57023MR423390
- [15] R. Oliver & Y. Segev — Fixed point free actions on acyclic 2-complexes, Acta Mathematica189 (2002), p. 203-285. Zbl1034.57033MR1961198
- [16] Y. Segev — Group actions on finite acyclic simplicial complexes, Israel J. Math.82 (1993), p. 381-394. Zbl0788.57024MR1239057
- [17] J.-P. Serre — Trees, Springer-Verlag, 1980. Zbl0548.20018MR607504
- [18] P.A. Smith — Fixed points of periodic transformations, AMS Coll. Pub., vol. XXVII, 1942, p. 350-373.
- [19] M. Suzuki — On a class of doubly transitive groups, Ann. of Math.75 (1962), p. 105-145. Zbl0106.24702MR136646
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.