Finite group actions on acyclic 2 -complexes

Alejandro Adem

Séminaire Bourbaki (2001-2002)

  • Volume: 44, page 1-17
  • ISSN: 0303-1179

How to cite

top

Adem, Alejandro. "Finite group actions on acyclic $2$-complexes." Séminaire Bourbaki 44 (2001-2002): 1-17. <http://eudml.org/doc/110306>.

@article{Adem2001-2002,
author = {Adem, Alejandro},
journal = {Séminaire Bourbaki},
keywords = {fixed point free action; acyclic complex; finite simple group; classification theorem; group of Lie type; sporadic simple group},
language = {eng},
pages = {1-17},
publisher = {Société Mathématique de France},
title = {Finite group actions on acyclic $2$-complexes},
url = {http://eudml.org/doc/110306},
volume = {44},
year = {2001-2002},
}

TY - JOUR
AU - Adem, Alejandro
TI - Finite group actions on acyclic $2$-complexes
JO - Séminaire Bourbaki
PY - 2001-2002
PB - Société Mathématique de France
VL - 44
SP - 1
EP - 17
LA - eng
KW - fixed point free action; acyclic complex; finite simple group; classification theorem; group of Lie type; sporadic simple group
UR - http://eudml.org/doc/110306
ER -

References

top
  1. [1] M. Aschbacher — Finite Group Theory, Cambridge Studies in Advanced Mathematics, vol. 10, CUP, 2000. Zbl0997.20001MR1777008
  2. [2] M. Aschbacher & Y. Segev — A fixed point theorem for groups acting on finite 2-dimensional acyclic simplicial complexes, Proc. London Math. Soc. (3) 67 (1993), p. 329-354. Zbl0834.57022MR1226605
  3. [3] M. Aschbacher & S. Smith — Work in progress: a classification of quasithin groups, available at http://www.math.uic.edu/~smiths/papers/quasithin/quasithin.dvi. 
  4. [4] G. Bredon — Introduction to Compact Transformation Groups, Academic Press, 1972. Zbl0246.57017MR413144
  5. [5] K. Brown — Cohomology of Groups, GTM, vol. 87, Springer-Verlag, 1982. Zbl0584.20036MR672956
  6. [6] R. Carter — Simple Groups of Lie Type, Wiley, 1972. Zbl0723.20006MR407163
  7. [7] E. Floyd & R. Richardson — An action of a finite group on an n-cell without stationary points, Bull. Amer. Math. Soc. (N.S.)65 (1959), p. 73-76. Zbl0088.15302MR100848
  8. [8] D. Gorenstein — Finite Groups, Harper and Row, 1969. Zbl0185.05701MR231903
  9. [9] _, The Classification of Finite Simple Groups, Plenum Press, New York, 1983. 
  10. [10] R. Griess — Twelve Sporadic Groups, Springer-Verlag, 1998. Zbl0908.20007MR1707296
  11. [11] B. Huppert & N. Blackburn — Finite Groups III, Springer-Verlag, 1982. Zbl0514.20002MR662826
  12. [12] R. Kirby & M. Scharlemann — Eight faces of the Poincaré homology 3-sphere, Geometric Topology, Academic Press, 1979. Zbl0469.57006MR537730
  13. [13] R. Oliver — Fixed point sets of group actions on finite acyclic complexes, Comment. Math. Helv.50 (1975), p. 155-177. Zbl0304.57020MR375361
  14. [14] _, Smooth compact group actions on disks, Math. Z.149 (1976), p. 79-96. Zbl0334.57023MR423390
  15. [15] R. Oliver & Y. Segev — Fixed point free actions on acyclic 2-complexes, Acta Mathematica189 (2002), p. 203-285. Zbl1034.57033MR1961198
  16. [16] Y. Segev — Group actions on finite acyclic simplicial complexes, Israel J. Math.82 (1993), p. 381-394. Zbl0788.57024MR1239057
  17. [17] J.-P. Serre — Trees, Springer-Verlag, 1980. Zbl0548.20018MR607504
  18. [18] P.A. Smith — Fixed points of periodic transformations, AMS Coll. Pub., vol. XXVII, 1942, p. 350-373. 
  19. [19] M. Suzuki — On a class of doubly transitive groups, Ann. of Math.75 (1962), p. 105-145. Zbl0106.24702MR136646

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.