Finite group actions on acyclic 2 -complexes

Alejandro Adem

Séminaire Bourbaki (2001-2002)

  • Volume: 44, page 1-17
  • ISSN: 0303-1179

How to cite

top

Adem, Alejandro. "Finite group actions on acyclic $2$-complexes." Séminaire Bourbaki 44 (2001-2002): 1-17. <http://eudml.org/doc/110306>.

@article{Adem2001-2002,
author = {Adem, Alejandro},
journal = {Séminaire Bourbaki},
keywords = {fixed point free action; acyclic complex; finite simple group; classification theorem; group of Lie type; sporadic simple group},
language = {eng},
pages = {1-17},
publisher = {Société Mathématique de France},
title = {Finite group actions on acyclic $2$-complexes},
url = {http://eudml.org/doc/110306},
volume = {44},
year = {2001-2002},
}

TY - JOUR
AU - Adem, Alejandro
TI - Finite group actions on acyclic $2$-complexes
JO - Séminaire Bourbaki
PY - 2001-2002
PB - Société Mathématique de France
VL - 44
SP - 1
EP - 17
LA - eng
KW - fixed point free action; acyclic complex; finite simple group; classification theorem; group of Lie type; sporadic simple group
UR - http://eudml.org/doc/110306
ER -

References

top
  1. [1] M. Aschbacher — Finite Group Theory, Cambridge Studies in Advanced Mathematics, vol. 10, CUP, 2000. Zbl0997.20001MR1777008
  2. [2] M. Aschbacher & Y. Segev — A fixed point theorem for groups acting on finite 2-dimensional acyclic simplicial complexes, Proc. London Math. Soc. (3) 67 (1993), p. 329-354. Zbl0834.57022MR1226605
  3. [3] M. Aschbacher & S. Smith — Work in progress: a classification of quasithin groups, available at http://www.math.uic.edu/~smiths/papers/quasithin/quasithin.dvi. 
  4. [4] G. Bredon — Introduction to Compact Transformation Groups, Academic Press, 1972. Zbl0246.57017MR413144
  5. [5] K. Brown — Cohomology of Groups, GTM, vol. 87, Springer-Verlag, 1982. Zbl0584.20036MR672956
  6. [6] R. Carter — Simple Groups of Lie Type, Wiley, 1972. Zbl0723.20006MR407163
  7. [7] E. Floyd & R. Richardson — An action of a finite group on an n-cell without stationary points, Bull. Amer. Math. Soc. (N.S.)65 (1959), p. 73-76. Zbl0088.15302MR100848
  8. [8] D. Gorenstein — Finite Groups, Harper and Row, 1969. Zbl0185.05701MR231903
  9. [9] _, The Classification of Finite Simple Groups, Plenum Press, New York, 1983. 
  10. [10] R. Griess — Twelve Sporadic Groups, Springer-Verlag, 1998. Zbl0908.20007MR1707296
  11. [11] B. Huppert & N. Blackburn — Finite Groups III, Springer-Verlag, 1982. Zbl0514.20002MR662826
  12. [12] R. Kirby & M. Scharlemann — Eight faces of the Poincaré homology 3-sphere, Geometric Topology, Academic Press, 1979. Zbl0469.57006MR537730
  13. [13] R. Oliver — Fixed point sets of group actions on finite acyclic complexes, Comment. Math. Helv.50 (1975), p. 155-177. Zbl0304.57020MR375361
  14. [14] _, Smooth compact group actions on disks, Math. Z.149 (1976), p. 79-96. Zbl0334.57023MR423390
  15. [15] R. Oliver & Y. Segev — Fixed point free actions on acyclic 2-complexes, Acta Mathematica189 (2002), p. 203-285. Zbl1034.57033MR1961198
  16. [16] Y. Segev — Group actions on finite acyclic simplicial complexes, Israel J. Math.82 (1993), p. 381-394. Zbl0788.57024MR1239057
  17. [17] J.-P. Serre — Trees, Springer-Verlag, 1980. Zbl0548.20018MR607504
  18. [18] P.A. Smith — Fixed points of periodic transformations, AMS Coll. Pub., vol. XXVII, 1942, p. 350-373. 
  19. [19] M. Suzuki — On a class of doubly transitive groups, Ann. of Math.75 (1962), p. 105-145. Zbl0106.24702MR136646

NotesEmbed ?

top

You must be logged in to post comments.