Bellman approach to some problems in harmonic analysis

Alexander Volberg[1]

  • [1] Université Paris VI UFR de Mathématiques 4, place Jussieu F-75252 Paris cedex 05

Séminaire Équations aux dérivées partielles (2001-2002)

  • Volume: 2001-2002, page 1-14

Abstract

top
The stochastic optimal control uses the differential equation of Bellman and its solution - the Bellman function. Recently the Bellman function proved to be an efficient tool for solving some (sometimes old) problems in harmonic analysis.

How to cite

top

Volberg, Alexander. "Bellman approach to some problems in harmonic analysis." Séminaire Équations aux dérivées partielles 2001-2002 (2001-2002): 1-14. <http://eudml.org/doc/11038>.

@article{Volberg2001-2002,
abstract = {The stochastic optimal control uses the differential equation of Bellman and its solution - the Bellman function. Recently the Bellman function proved to be an efficient tool for solving some (sometimes old) problems in harmonic analysis.},
affiliation = {Université Paris VI UFR de Mathématiques 4, place Jussieu F-75252 Paris cedex 05},
author = {Volberg, Alexander},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Bellman approach to some problems in harmonic analysis},
url = {http://eudml.org/doc/11038},
volume = {2001-2002},
year = {2001-2002},
}

TY - JOUR
AU - Volberg, Alexander
TI - Bellman approach to some problems in harmonic analysis
JO - Séminaire Équations aux dérivées partielles
PY - 2001-2002
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2001-2002
SP - 1
EP - 14
AB - The stochastic optimal control uses the differential equation of Bellman and its solution - the Bellman function. Recently the Bellman function proved to be an efficient tool for solving some (sometimes old) problems in harmonic analysis.
LA - eng
UR - http://eudml.org/doc/11038
ER -

References

top
  1. St. Buckley, Summation conditions on weights, Mich. Math. J. 40 (1993), 153-170. Zbl0794.42011MR1214060
  2. R. Fefferman, C. Kenig, J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Annals of Math, 134 (1991), 65-124. Zbl0770.35014MR1114608
  3. D.L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Annals of Prob. 12 (1984), 647-702. Zbl0556.60021MR744226
  4. F. Nazarov, A. Volberg, Heating of the Ahlfors-Beurling operator and estimates of its norms, Preprint. Zbl1061.47042
  5. St. Petermichl, A. Volberg, Heating of the Ahlfors-Beurling operator : weakly quasiregular maps on the plane are quasiregular, To appear in Duke Math J. Zbl1025.30018MR1894362
  6. F. Nazarov, S. Treil, A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. of the Amer. Math. Soc., 12 (1999), N 4, 909-928. Zbl0951.42007MR1685781
  7. F. Nazarov, S. Treil, The hunt for the Bellman function : applications to estimates of singular integral operators and to other classical problems in harmonic analysis, St Petersburg Math. J., 8 (1997), N 5, 32-162. Zbl0873.42011MR1428988
  8. F. Nazarov, S. Treil, A. Volberg, Bellman function in stochastic control and harmonic analysis, in “systems, Approximation, singular Integral operators, and related topics”, ed. A. Borichev, N. Nikolski, OPERATOR THEORY : Advances and applications, v.129, 2001, 393-424, Birkhäuser Verlag. Zbl0999.60064
  9. F. Nazarov, A. Volberg, The Bellman function and the imbeddings of the model space K θ , to appear in J. d’Analyse Math. 
  10. S. Petermichl, J. Wittwer, A sharp weighted estimates on the norm of Hilbert transform via invariant A 2 characteristic of the weight, To appear in Mich. Math. J. MR1897034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.