Bellman approach to some problems in harmonic analysis
- [1] Université Paris VI UFR de Mathématiques 4, place Jussieu F-75252 Paris cedex 05
Séminaire Équations aux dérivées partielles (2001-2002)
- Volume: 2001-2002, page 1-14
Access Full Article
topAbstract
topHow to cite
topVolberg, Alexander. "Bellman approach to some problems in harmonic analysis." Séminaire Équations aux dérivées partielles 2001-2002 (2001-2002): 1-14. <http://eudml.org/doc/11038>.
@article{Volberg2001-2002,
abstract = {The stochastic optimal control uses the differential equation of Bellman and its solution - the Bellman function. Recently the Bellman function proved to be an efficient tool for solving some (sometimes old) problems in harmonic analysis.},
affiliation = {Université Paris VI UFR de Mathématiques 4, place Jussieu F-75252 Paris cedex 05},
author = {Volberg, Alexander},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Bellman approach to some problems in harmonic analysis},
url = {http://eudml.org/doc/11038},
volume = {2001-2002},
year = {2001-2002},
}
TY - JOUR
AU - Volberg, Alexander
TI - Bellman approach to some problems in harmonic analysis
JO - Séminaire Équations aux dérivées partielles
PY - 2001-2002
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2001-2002
SP - 1
EP - 14
AB - The stochastic optimal control uses the differential equation of Bellman and its solution - the Bellman function. Recently the Bellman function proved to be an efficient tool for solving some (sometimes old) problems in harmonic analysis.
LA - eng
UR - http://eudml.org/doc/11038
ER -
References
top- St. Buckley, Summation conditions on weights, Mich. Math. J. 40 (1993), 153-170. Zbl0794.42011MR1214060
- R. Fefferman, C. Kenig, J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Annals of Math, 134 (1991), 65-124. Zbl0770.35014MR1114608
- D.L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Annals of Prob. 12 (1984), 647-702. Zbl0556.60021MR744226
- F. Nazarov, A. Volberg, Heating of the Ahlfors-Beurling operator and estimates of its norms, Preprint. Zbl1061.47042
- St. Petermichl, A. Volberg, Heating of the Ahlfors-Beurling operator : weakly quasiregular maps on the plane are quasiregular, To appear in Duke Math J. Zbl1025.30018MR1894362
- F. Nazarov, S. Treil, A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. of the Amer. Math. Soc., 12 (1999), N4, 909-928. Zbl0951.42007MR1685781
- F. Nazarov, S. Treil, The hunt for the Bellman function : applications to estimates of singular integral operators and to other classical problems in harmonic analysis, St Petersburg Math. J., 8 (1997), N5, 32-162. Zbl0873.42011MR1428988
- F. Nazarov, S. Treil, A. Volberg, Bellman function in stochastic control and harmonic analysis, in “systems, Approximation, singular Integral operators, and related topics”, ed. A. Borichev, N. Nikolski, OPERATOR THEORY : Advances and applications, v.129, 2001, 393-424, Birkhäuser Verlag. Zbl0999.60064
- F. Nazarov, A. Volberg, The Bellman function and the imbeddings of the model space , to appear in J. d’Analyse Math.
- S. Petermichl, J. Wittwer, A sharp weighted estimates on the norm of Hilbert transform via invariant characteristic of the weight, To appear in Mich. Math. J. MR1897034
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.