Existence de solutions explosives dans l’espace d’énergie pour l’équation de Korteweg–de Vries généralisée critique
Séminaire Équations aux dérivées partielles (2001-2002)
- page 1-9
Access Full Article
topHow to cite
topReferences
top- J.L. Bona, V.A. Dougalis, O.A. Karakashian and W.R. McKinney, Conservative, high order numerical schemes, Phil. Trans. Roy. Soc. London Ser. A. 351, (1995) 107—164. Zbl0824.65095MR1336983
- D.B. Dix and W.R. McKinney, Numerical computations of self-similar blow up solutions of the generalized Korteweg-de Vries equation, Diff. Int. Eq., 11 (1998), 679—723. Zbl1007.65061MR1664756
- W. Eckhaus and P. Schuur, The emergence of solitons of the Korteweg–de Vries equation from arbitrary initial conditions, Math. Meth. Appl. Sci. 5 (1983), 97—116. Zbl0518.35074MR690898
- C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46, (1993) 527—620. Zbl0808.35128MR1211741
- D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. 539, (1895) 422—443. Zbl26.0881.02
- G.L. Lamb Jr., Element of soliton theory (John Wiley & Sons, New York 1980). Zbl0445.35001MR591458
- P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, (1968) 467—490. Zbl0162.41103MR235310
- Y. Martel and F. Merle, A Liouville Theorem for the critical generalized Korteweg–de Vries equation, J. Math. Pures Appl. 79, (2000) 339—425. Zbl0963.37058MR1753061
- Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157, (2001) 219—254. Zbl0981.35073MR1826966
- Y. Martel and F. Merle, Stability of the blow up profile and lower bounds on the blow up rate for the critical generalized KdV equation, Ann. of Math. 155, (2002) 235—280. Zbl1005.35081MR1888800
- Y. Martel and F. Merle, Blow up in finite time and dynamics of blow up solutions for the -critical generalized KdV equation, à paraître dans J. Amer. Math. Soc. Zbl0996.35064MR1896235
- Y. Martel, F. Merle and Tai–Peng Tsai, Stability and asymptotic stability in the energy space of the sum of solitons for subcritical gKdV equations, préprint. Zbl1017.35098MR1946336
- F. Merle, Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations, Proceeding of the International Congress of Mathematicians, (Berlin, 1998), Doc. Math. J. DMV. Zbl0896.35123MR1648140
- F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc. 14, (2001) 555—578. Zbl0970.35128MR1824989
- F. Merle and P. Raphael, Blowup dynamic and upper bound on the blowup rate for the critical nonlinear Schrödinger equation, préprint. Zbl1185.35263
- R.M. Miura, The Korteweg–de Vries equation: a survey of results, SIAM Review 18, (1976) 412—459. Zbl0333.35021MR404890
- M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567—576. Zbl0527.35023MR691044