Surfaces minima avec obstacles

Yves Bamberger

Séminaire Choquet. Initiation à l'analyse (1969-1970)

  • Volume: 9, Issue: 2, page 1-16

How to cite

top

Bamberger, Yves. "Surfaces minima avec obstacles." Séminaire Choquet. Initiation à l'analyse 9.2 (1969-1970): 1-16. <http://eudml.org/doc/110444>.

@article{Bamberger1969-1970,
author = {Bamberger, Yves},
journal = {Séminaire Choquet. Initiation à l'analyse},
language = {fre},
number = {2},
pages = {1-16},
publisher = {Secrétariat mathématique},
title = {Surfaces minima avec obstacles},
url = {http://eudml.org/doc/110444},
volume = {9},
year = {1969-1970},
}

TY - JOUR
AU - Bamberger, Yves
TI - Surfaces minima avec obstacles
JO - Séminaire Choquet. Initiation à l'analyse
PY - 1969-1970
PB - Secrétariat mathématique
VL - 9
IS - 2
SP - 1
EP - 16
LA - fre
UR - http://eudml.org/doc/110444
ER -

References

top
  1. [1] Almgren ( F.J., Jr). - Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Annals of Math. , Series 2, t. 84, 1966, p. 277-292. Zbl0146.11905MR200816
  2. [2] Bombieri ( Enrico). - Régularité des hypersurfaces minimales, Séminaire Bourbaki, 21e année, 1968/69, n° 353, 11 p. Zbl0206.24201
  3. [3] Fleming ( Wendell H. ). - Functions whose partial derivatives are measures, Illinois J. of Math., t. 4, 1960, p. 452-478. Zbl0151.05402MR130338
  4. [4] Fleming ( Wendell H. ) . - On the oriented Plateau problem, Rend. Circ. mat. Palermo, Serie 2, t. 11, 1962, p. 69-90. Zbl0107.31304MR157263
  5. [5] Gagliardo ( Emilio). - Caratterizzazioni delle trace sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Semin. mat. Univ. Padova, t. 27, 1957, p. 284-305. Zbl0087.10902MR102739
  6. [6] Giorgi ( Ennio de). - Su una teoria generale della misura (r - 1)-dimensionale in uno spazio ad r-dimensioni, Annali di Mat. pura ed appl., Serie 4, t. 36, 1954, p. 191-213. Zbl0055.28504MR62214
  7. [7] Giorgi ( Ennio de). - Nuovi teoremi relativi alle misure (r - 1)-dimensionali in uno spazio ad r-dimensioni, Ric. di Mat., t. 4, 1955, p. 95-113. Zbl0066.29903MR74499
  8. [8] Miranda ( Mario). - Distribuzioni aventi derivate misure ed insiemi di perimetro localmente finito, Ann. Sc. Norm. Sup. Pisa, Serie 3, t. 18, 1964, p. 27-56. Zbl0131.11802MR165073
  9. [9] Miranda ( Mario). - Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani, Ann. Sc. Norm. Sup. Pisa, Serie 3, t. 18, 1964, p. 515-542. Zbl0152.24402MR174706
  10. [10] Miranda ( Mario). - Sul minimo dell'integrale del gradiente di una funzione, Ann. Sc. Norm. Sup. Pisa, Serie 3, t. 19, 1965, p. 627-665. Zbl0166.09604MR188839
  11. [11] Miranda ( Mario). - Un teorema di esistenza e unicità per il problema dell'area minima in n variabili, Ann. Sc. Norm. Sup. Pisa, Serie 3, t. 19, 1965, p. 233-249. Zbl0137.08201MR181918
  12. [12] Nitsche ( Johannes C.C.). - A variational problem with inequalities as boundary conditions, Bull. Amer. math. Soc., t. 75, 1969, p. 450-452. Zbl0194.42503MR240693
  13. [13] Schwartz ( Laurent). - Théorie des distributions. - Paris, Hermann, 1966 (Publ. Inst. Math. Univ. Strasbourg, IX-X). Zbl0149.09501MR209834
  14. [14] Simons ( James). - Minimal varieties in riemannian manifolds, Annals of Math., Series 2, t. 88, 1968, p. 62-105. Zbl0181.49702MR233295
  15. [15] Triscari ( Dionisio). - Sulla singolarità delle frontiere orientate di misura minima nello spazio euclideo a 4 dimensioni, Matematiche, Catania, t. 18, 1963, p. 139-163. Zbl0138.03603MR169104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.