Asymptotiques de Lifshitz
- [1] Département de Mathématique, Institut Galilée, U.M.R. 7539 C.N.R.S, Université de Paris-Nord, 99 avenue J.-B. Clément, F-93430 Villetaneuse, France
Séminaire Équations aux dérivées partielles (2001-2002)
- Volume: 2001-2002, page 1-12
Access Full Article
topAbstract
topHow to cite
topReferences
top- S. Agmon. On positive solutions of elliptic operators with periodic coefficients in , spectral results and extension to elliptic operators on Riemannian manifolds. Dans I. Knowles and R. Lewis, éditeurs, Differential equations, pages 7–17, Birmingham, 1984. North-Holland. Zbl0564.35033MR799327
- J.-M. Barbaroux, J.-M. Combes, et P. Hislop. Landau hamiltonians with unbounded random potentials. Letters in Mathematical Physics, 40(4) :355–369, 1997. Zbl0894.47028MR1453246
- M. Sh Birman. Perturbations of operators with periodic coefficients. Dans Schrödinger Operators : standard and non-standard, Dubna, 1988.
- R. Carmona et J. Lacroix. Spectral Theory of Random Schrödinger Operators. Birkhäuser, Basel, 1990. Zbl0717.60074MR1102675
- A. Dembo et O. Zeitouni. Large deviation techniques and applications. Jones and Bartlett Publi-shers, Boston, 1992. Zbl0793.60030MR1202429
- J.-M. Deuschel et D. Stroock. Large deviations, volume 137 de Pure and applied Mathematics. Academic Press, 1989. Zbl0705.60029MR997938
- M. Eastham. The spectral theory of periodic differential operators. Scottish Academic Press, Edinburgh, 1973. Zbl0287.34016
- F. Ghribi. Asymptotique de Lifshitz pour des opérateurs de Schrödinger à champ magnétique aléatoire. Thèse de doctorat, Université Paris 13, Villetaneuse. en préparation.
- B. Helffer et A. Mohamed. Asymptotic of the density of states for the Schrödinger operator with periodic electric potential. Duke Math. J., 92(1) :1–60, 1998. Zbl0951.35104MR1609321
- W. Kirsch. Random Schrödinger operators. Dans A. Jensen, H. Holden, éditeurs, Schrödinger Operators, number 345 in Lecture Notes in Physics, Berlin, 1989. Springer Verlag. Proceedings, Sonderborg, Denmark 1988. Zbl0712.35070MR1037323
- W. Kirsch et F. Martinelli. On the spectrum of Schrödinger operators with a random potential. Communications in Mathematical Physics, 85 :329–350, 1982. Zbl0506.60058MR678150
- W. Kirsch et F. Martinelli. Large deviations and Lifshitz singularities of the integrated density of states of random hamiltonians. Communications in Mathematical Physics, 89 :27–40, 1983. Zbl0517.60071MR707770
- W. Kirsch et B. Simon. Lifshitz tails for the Anderson model. Journal of Statistical Physics, 38 :65–76, 1985. MR784931
- W. Kirsch, P. Stollmann, et G. Stolz. Localization for random perturbations of periodic Schrödinger operators. Random Oper. Stochastic Equations, 6(3) :241–268, 1998. Zbl0927.60067MR1630995
- F. Klopp. Une remarque à propos des asymptotiques de Lifshitz internes. Disponible sur http://zeus.math.univ-paris13.fr/~klopp/publi.html.
- F. Klopp. Localization for some continuous random Schrödinger operators. Communications in Mathematical Physics, 167 :553–570, 1995. Zbl0820.60044MR1316760
- F. Klopp. Band edge behaviour for the integrated density of states of random Jacobi matrices in dimension 1. Journal of Statistical Physics, 90(3-4) :927–947, 1998. Zbl0924.47057MR1616938
- F. Klopp et J. Ralston. Endpoints of the spectrum of periodic operators are generically simple. Methods and Applications of Analysis, 7(3) :459–464, 2000. Zbl1040.35050MR1869296
- F. Klopp et T. Wolff. Lifshitz tails for 2-dimensional random Schrödinger operators. Jour. d’Analyse Math. A paraître. Zbl1058.47034
- F. Klopp. Internal Lifshits tails for random perturbations of periodic Schrödinger operators. Duke Math. J., 98(2) :335–396, 1999. Zbl1060.82509MR1695202
- F. Klopp. Precise high energy asymptotics for the integrated density of states of an unbounded random Jacobi matrix. Rev. Math. Phys., 12(4) :575–620, 2000. Zbl1044.82007MR1763843
- F. Klopp. Internal lifshitz tails for schrödinger operators with random potentials. Jour. Math. Phys., 2002. A paraître. Zbl1061.82017MR1902460
- F. Klopp and L. Pastur. Lifshitz tails for random Schrödinger operators with negative singular Poisson potential. Comm. Math. Phys., 206(1) :57–103, 1999. Zbl0937.60098MR1736990
- P. Kuchment. Floquet theory for partial differential equations, volume 60 of Operator Theory : Advances and Applications. Birkhäuser, Basel, 1993. Zbl0789.35002MR1232660
- I. M. Lifshitz. Structure of the energy spectrum of impurity bands in disordered solid solutions. Soviet Physics JETP, 17 :1159–1170, 1963.
- I. M. Lifshitz. Energy spectrum structure and quantum states of disordered condensed systems. Soviet Physics Uspekhi, 7 :549–573, 1965. MR181368
- I.M. Lifshitz, S.A. Gredeskul, et L.A. Pastur. Introduction to the theory of disordered systems. Wiley, New-York, 1988. MR1042095
- H. McKean et P. van Moerbeke. The spectrum of Hill’s equation. Inventiones Mathematicae, 30 :217–274, 1975. Zbl0319.34024
- H. P. McKean et E. Trubowitz. Hill’s surfaces and their theta functions. Bull. Amer. Math. Soc., 84(6) :1042–1085, 1978. Zbl0428.34026
- G. Mezincescu. Lifshitz singularities for periodic operators plus random potentials. Journal of Statistical Physics, 49 :1081–1090, 1987. Zbl0971.82508MR935490
- G. Mezincescu. Internal Lifshits singularities for one dimensional Schrödinger operators. Communications in Mathematical Physics, 158 :315–325, 1993. Zbl0783.60062MR1249597
- H. Najar. Asymptotique de la densité d’états intégrée des modèles aléatoires continus. Thèse de doctorat, Université Paris 13, Villetaneuse, November 2000.
- S. Nakao. On the spectral distribution of the Schrödinger operator with random potential. Japan Journal of Mathematics, 3 :117–139, 1977. Zbl0375.60067MR651925
- L. Pastur. Behaviour of some Wiener integrals as and the density of states of the Schrödinger equation with a random potential. Teor.-Mat.-Fiz, 32 :88–95, 1977. (in russian). Zbl0353.60053MR449356
- L. Pastur et A. Figotin. Spectra of Random and Almost-Periodic Operators. Springer Verlag, Berlin, 1992. Zbl0752.47002MR1223779
- D. H. Phong et E. M. Stein. The Newton polyhedron and oscillatory integral operators. Acta Math., 179(1) :105–152, 1997. Zbl0896.35147MR1484770
- M. Reed et B. Simon. Methods of Modern Mathematical Physics, Vol IV : Analysis of Operators. Academic Press, New-York, 1978. Zbl0401.47001MR493421
- O. Saad. Comportement en grandes énergies de la densité d’états du modèle d’Anderson non borné. Thèse de doctorat, Université de Paris 13, Villetaneuse. en préparation.
- J. Sjöstrand. Microlocal analysis for periodic magnetic Schrödinger equation and related questions. Dans Microlocal analysis and applications, volume 1495 des Lecture Notes in Mathematics, Berlin, 1991. Springer Verlag. Zbl0761.35090MR1178559
- M. M. Skriganov. Proof of the Bethe-Sommerfeld conjecture in dimension . Dokl. Akad. Nauk SSSR, 248(1) :39–42, 1979. Zbl0435.35028MR549367
- P. Stollmann. Lifshitz asymptotics via linear coupling of disorder. Math. Phys. Anal. Geom., 2(3) :279–289, 1999. Zbl0956.60071MR1736709
- A.S. Sznitman. Brownian motion, obstacles and random media. Springer-Verlag, Berlin, 1998. Zbl0973.60003MR1717054
- V. Varchenko. Newton polyhedra and estimations of oscillatory integrals. Functional Analysis and its Applications, 8 :175–196, 1976. Zbl0351.32011