Représentations intégrales dans les cônes convexes conucléaires et applications

Erik G. F. Thomas

Séminaire Choquet. Initiation à l'analyse (1977)

  • Volume: 17, Issue: 1, page 1-12

How to cite

top

Thomas, Erik G. F.. "Représentations intégrales dans les cônes convexes conucléaires et applications." Séminaire Choquet. Initiation à l'analyse 17.1 (1977): 1-12. <http://eudml.org/doc/110562>.

@article{Thomas1977,
author = {Thomas, Erik G. F.},
journal = {Séminaire Choquet. Initiation à l'analyse},
keywords = {convex cones; conuclear cones; integral representations; well capped cones; nuclear space; invariant reproducing kernels},
language = {fre},
number = {1},
pages = {1-12},
publisher = {Secrétariat mathématique},
title = {Représentations intégrales dans les cônes convexes conucléaires et applications},
url = {http://eudml.org/doc/110562},
volume = {17},
year = {1977},
}

TY - JOUR
AU - Thomas, Erik G. F.
TI - Représentations intégrales dans les cônes convexes conucléaires et applications
JO - Séminaire Choquet. Initiation à l'analyse
PY - 1977
PB - Secrétariat mathématique
VL - 17
IS - 1
SP - 1
EP - 12
LA - fre
KW - convex cones; conuclear cones; integral representations; well capped cones; nuclear space; invariant reproducing kernels
UR - http://eudml.org/doc/110562
ER -

References

top
  1. [1] Choquet ( G.). - Les cônes convexes faiblement complets dans l'analyse, "Proc. intern. Congress of Mathematicians" [1962. Stockholm], p. 317-330. - Djursholm, Institut Mittag-Leffer, 1973. Zbl0121.33101MR179571
  2. [2] Choquet ( G.). - Lectures on analysis, Vol. I-III. - New York, Benjamin, 1969 (Mathematics Lecture Note Series). 
  3. [3] Donoghue ( W.E.). - Distributions and Fourier transforms. - London, Academic Press, 1969 (Pure and applied Mathematics. Academic Press, 32). Zbl0188.18102
  4. [4] Edgar ( G.A.). - Extremal integral representations, J. funct. Analysis, t. 23, 1976, p. 145-161. Zbl0328.46041MR435797
  5. [5] Edgar ( G.A.). - A noncompact Choquet theorem, Proc. Amer. math. Soc., t. 49, 1975, p. 354-358. Zbl0273.46012MR372586
  6. [6] Godement ( R.). - Théorie des caractères, I et II, Annals of Math., t. 59, 1954, p. 47-85. Zbl0055.02103MR58879
  7. [7] Goullet de Rugy ( A.). - Sur les cônes engendrés par une famille de convexes compacts, Bull. Sc. math., 2e série, t. 97, 1973, p. 241-252. Zbl0277.46009MR348437
  8. [8] Maurin ( K.). - General eigenfunction expansions and unitary representations of topological groups. - Warszawa, PWN - Polish scientific Publishers, 1968 (Monografie matematyczne, 48). Zbl0185.39001MR247377
  9. [9] Pietsch ( A.). - Nuclear locally convex spaces. - Berlin, Springer-Verlag, 1972 (Ergebnisse der Mathematik, 66). Zbl0236.46001MR350360
  10. [10] Schwartz ( L.). - Radon measures on arbitrary topological spaces and cylindrical measures. - Bombay, Oxford university Press, 1973 (Tata Institute of fundamental Research. Studies in Mathematics, 6). Zbl0298.28001MR426084
  11. [11] Schwartz ( L.). - Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés, J. Analyse math., Jérusalem, t. 13, 1964, p. 115-256. Zbl0124.06504MR179587
  12. [12] Thomas ( E.G.F.). - Integral representations in conuclear spaces, "Vector space measures and applications, II" [1977. Dublin], p. 172-179. - Berlin, Springer-Verlag, 1978 (Lecture Notes in Mathematics, 645). Zbl0381.46005MR502439
  13. [13] Thomas ( E.G.F.). - Représentation intégrale dans les cônes convexes, C. R. Acad. Sc. Paris, t. 286, 1978, Série A, p. 515-518. Zbl0374.46001MR489160
  14. [14] Thomas ( E.G.F.). - Integral representations in convex cones, Université de Groningen, Report ZW-7703. 
  15. [15] Thomas ( E.G.F.). - Integral representations of invariant reproducing kernels, Proceedings of a Gongress of Mathematisch Genootschap [1978. Amsterdam]. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.