Existence globale pour les systèmes de Maxwell-Bloch
Séminaire Équations aux dérivées partielles (2002-2003)
- Volume: 2002-2003, page 1-14
Access Full Article
topHow to cite
topDumas, Éric. "Existence globale pour les systèmes de Maxwell-Bloch." Séminaire Équations aux dérivées partielles 2002-2003 (2002-2003): 1-14. <http://eudml.org/doc/11072>.
@article{Dumas2002-2003,
author = {Dumas, Éric},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {existence; uniqueness; energy solution; Maxwell-Bloch system},
language = {fre},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Existence globale pour les systèmes de Maxwell-Bloch},
url = {http://eudml.org/doc/11072},
volume = {2002-2003},
year = {2002-2003},
}
TY - JOUR
AU - Dumas, Éric
TI - Existence globale pour les systèmes de Maxwell-Bloch
JO - Séminaire Équations aux dérivées partielles
PY - 2002-2003
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2002-2003
SP - 1
EP - 14
LA - fre
KW - existence; uniqueness; energy solution; Maxwell-Bloch system
UR - http://eudml.org/doc/11072
ER -
References
top- B. Bidégaray, A. Bourgeade and D. Reignier. Introducing physical relaxation terms in Bloch equations. Journal of Computational Physics, 170, 603-613, 2001. Zbl1112.81022MR1844905
- P. Donnat and J. Rauch. Global solvability of the Maxwell-Bloch equations from nonlinear optics. Arch. Ration. Mech. Anal., 136(3), 291-303, 1996. Zbl0873.35093MR1423010
- P. Gérard. Microlocal defect measures. Communications in Partial Differential Equations, 16, 1761–1794, 1991. Zbl0770.35001MR1135919
- J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation. Journal of Functional Analysis, 133, no. 1, 50–68, 1995. Zbl0849.35064MR1351643
- H. Haddar. Modèles asymptotiques en ferromagnétisme : couches minces et homogénéisation. Thèse INRIA-École Nationale des Ponts et Chaussées, 2000.
- J.-L. Joly, G. Métivier, and J. Rauch. Global solutions to Maxwell equations in a ferromagnetic medium. Annales Henri Poincaré, 1, no. 2, 307–340, 2000. Zbl0964.35155MR1770802
- H. Lindblad. Counterexamples to local existence for semilinear wave equations. American Journal of Mathematics, 118, no. 1, 1–16, 1996. Zbl0855.35080MR1375301
- H. Lindblad and C.D. Sogge. On existence and scattering with minimal regularity for semilinear wave equations. Journal of Functional Analysis, 130, 357–426, 1995. Zbl0846.35085MR1335386
- A.C. Newell and J.V. Moloney. Nonlinear optics. Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1992. Zbl1054.78001MR1163192
- R. Pantell and H. Puthoff. Fundamentals of quantum electronics. Wiley and Sons Inc., N.Y., 1969.
- E. Stein. Singular integrals and differentiability properties of functions. Princeton University Press, 1970. Zbl0207.13501MR290095
- L. Tartar. H-measures, a new approach for studying homogeneization, oscillations and concentrations effects in partial differential equations. Proceedings of the Royal Society of Edinburgh, 115(A), 193–230, 1990. Zbl0774.35008MR1069518
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.