Existence globale pour les systèmes de Maxwell-Bloch

Éric Dumas

Séminaire Équations aux dérivées partielles (2002-2003)

  • Volume: 2002-2003, page 1-14

How to cite


Dumas, Éric. "Existence globale pour les systèmes de Maxwell-Bloch." Séminaire Équations aux dérivées partielles 2002-2003 (2002-2003): 1-14. <http://eudml.org/doc/11072>.

author = {Dumas, Éric},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {existence; uniqueness; energy solution; Maxwell-Bloch system},
language = {fre},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Existence globale pour les systèmes de Maxwell-Bloch},
url = {http://eudml.org/doc/11072},
volume = {2002-2003},
year = {2002-2003},

AU - Dumas, Éric
TI - Existence globale pour les systèmes de Maxwell-Bloch
JO - Séminaire Équations aux dérivées partielles
PY - 2002-2003
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2002-2003
SP - 1
EP - 14
LA - fre
KW - existence; uniqueness; energy solution; Maxwell-Bloch system
UR - http://eudml.org/doc/11072
ER -


  1. B. Bidégaray, A. Bourgeade and D. Reignier. Introducing physical relaxation terms in Bloch equations. Journal of Computational Physics, 170, 603-613, 2001. Zbl1112.81022MR1844905
  2. P. Donnat and J. Rauch. Global solvability of the Maxwell-Bloch equations from nonlinear optics. Arch. Ration. Mech. Anal., 136(3), 291-303, 1996. Zbl0873.35093MR1423010
  3. P. Gérard. Microlocal defect measures. Communications in Partial Differential Equations, 16, 1761–1794, 1991. Zbl0770.35001MR1135919
  4. J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation. Journal of Functional Analysis, 133, no. 1, 50–68, 1995. Zbl0849.35064MR1351643
  5. H. Haddar. Modèles asymptotiques en ferromagnétisme : couches minces et homogénéisation. Thèse INRIA-École Nationale des Ponts et Chaussées, 2000. 
  6. J.-L. Joly, G. Métivier, and J. Rauch. Global solutions to Maxwell equations in a ferromagnetic medium. Annales Henri Poincaré, 1, no. 2, 307–340, 2000. Zbl0964.35155MR1770802
  7. H. Lindblad. Counterexamples to local existence for semilinear wave equations. American Journal of Mathematics, 118, no. 1, 1–16, 1996. Zbl0855.35080MR1375301
  8. H. Lindblad and C.D. Sogge. On existence and scattering with minimal regularity for semilinear wave equations. Journal of Functional Analysis, 130, 357–426, 1995. Zbl0846.35085MR1335386
  9. A.C. Newell and J.V. Moloney. Nonlinear optics. Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1992. Zbl1054.78001MR1163192
  10. R. Pantell and H. Puthoff. Fundamentals of quantum electronics. Wiley and Sons Inc., N.Y., 1969. 
  11. E. Stein. Singular integrals and differentiability properties of functions. Princeton University Press, 1970. Zbl0207.13501MR290095
  12. L. Tartar. H-measures, a new approach for studying homogeneization, oscillations and concentrations effects in partial differential equations. Proceedings of the Royal Society of Edinburgh, 115(A), 193–230, 1990. Zbl0774.35008MR1069518

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.