Sur le Problème de Conductivité Inverse

Habib Ammari[1]; Hyeonbae Kang[2]

  • [1] Centre de Mathématiques Appliquées, Ecole Polytechnique & CNRS UMR 7641,91128 Palaiseau Cedex, France
  • [2] School of Mathematical Sciences, Seoul National University, Seoul 151-747, Corée du Sud

Séminaire Équations aux dérivées partielles (2003-2004)

  • page 1-15

How to cite

top

Ammari, Habib, and Kang, Hyeonbae. "Sur le Problème de Conductivité Inverse." Séminaire Équations aux dérivées partielles (2003-2004): 1-15. <http://eudml.org/doc/11079>.

@article{Ammari2003-2004,
affiliation = {Centre de Mathématiques Appliquées, Ecole Polytechnique & CNRS UMR 7641,91128 Palaiseau Cedex, France; School of Mathematical Sciences, Seoul National University, Seoul 151-747, Corée du Sud},
author = {Ammari, Habib, Kang, Hyeonbae},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-15},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Sur le Problème de Conductivité Inverse},
url = {http://eudml.org/doc/11079},
year = {2003-2004},
}

TY - JOUR
AU - Ammari, Habib
AU - Kang, Hyeonbae
TI - Sur le Problème de Conductivité Inverse
JO - Séminaire Équations aux dérivées partielles
PY - 2003-2004
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 15
LA - fre
UR - http://eudml.org/doc/11079
ER -

References

top
  1. Alessandrini G., Stable determination of conductivity by boundary measurements, Applicable Analysis 27 (1988) pp. 153–172. Zbl0616.35082MR922775
  2. Ammari H., Iakovleva E. et Moskow S., Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency, SIAM J. Math. Anal. 34 (2003), 882–900. Zbl1038.78012MR1969606
  3. Ammari H. et Kang H., Reconstruction of Small Inclusions from Boundary Measurements, Lecture Notes in Mathematics, Springer-Verlag, à paraître (2004). Zbl1113.35148
  4. Ammari H. et Kang H., High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter, SIAM J. Math. Anal. 34 (2003), 1152–1166. Zbl1036.35050MR2001663
  5. —————, Properties of the generalized polarization tensors, Multiscale Modeling and Simulation : A SIAM Interdisciplinary Journal 1 (2003), 335–348. Zbl1060.35159MR1990200
  6. Ammari H., Kang H., Kim E. et Lim M., Reconstruction of closely spaced small inclusions, à paraître dans SIAM Journal on Numerical Analysis (2004). Zbl1081.35133
  7. Ammari H., Kang H., Nakamura G. et Tanuma K., Complete asymptotic expansions of solutions of the system of elastostatics in the presence of inhomogeneities of small diameter, J. Elasticity 67 (2002), 97–129. Zbl1089.74576MR1985444
  8. Ammari H., Kang H. et Touibi K., Boundary layer techniques for deriving the effective properties of composite materials, à paraître dans Asympt. Anal. (2004). Zbl1072.35020
  9. Ammari H. et Khelifi A., Electromagnetic scattering from small dielectric inhomogeneities, J. Math. Pures Appl. 82 (2003), 749–842. Zbl1033.78006MR2005296
  10. Ammari H., Kwon O., Seo J.K. et Woo E.J., T-scan electrical impedance imaging system for anomaly detection, à paraître dans SIAM J. Appl. Math. (2004). Zbl1075.35102MR2112397
  11. Ammari H., Moskow S. et Vogelius M., Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter, ESAIM : Cont. Opt. Calc. Var. 9 (2003) pp. 49–66. Zbl1075.78010MR1957090
  12. Ammari H. et Seo J.K., A new algorithm for the reconstruction of conductivity inhomogeneities, Adv. Appl. Math. 30 (2003), 679–705. Zbl1040.78008MR1977849
  13. Ammari H. et Uhlmann G., Reconstruction of the potential from partial Cauchy data for the Schrödinger equation, Indiana Univ. Math. J. 53 (2004), 169–183. Zbl1051.35103MR2048188
  14. Ammari H., Vogelius M. et Volkov D., Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of imperfections of small diameter II. The full Maxwell equations, J. Math. Pures Appl. 80 (2001) pp. 769–814. Zbl1042.78002MR1860816
  15. Ammari H. et Volkov D., Correction of order three for the expansion of two dimensional electromagnetic fields perturbed by the presence of inhomogeneities of small diameter, J. Comput. Physics 189 (2003), 371–389. Zbl1023.78003MR1996052
  16. Beretta E., Francini E. et Vogelius M., Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis, J. Math. Pures Appl. 82 (2003), 1277–1301. Zbl1089.78003MR2020923
  17. Beretta E., Mukherjee A. et Vogelius M., Asymptotic formuli for steady state voltage potentials in the presence of conductivity imperfections of small area, Zeitschrift für Angewandte Mathematik und Physik. 52 (2001) pp. 543–572. Zbl0974.78006MR1856987
  18. Borcea L., Berrymann J.G. et Papanicolaou G.C., High contrast impedance tomography, Inverse Problems 12 (1996) pp. 1–24. Zbl0862.35137MR1421651
  19. Brühl M., Hanke M., et Vogelius M., A direct impedance tomography algorithm for locating small inhomogeneities, Numer. Math. 93 (2003), 635–654. Zbl1016.65079MR1961882
  20. Calderón A.P., On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeiro (1980), 65-73. MR590275
  21. Capdeboscq Y. et Vogelius M., A general representation formula for the boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, Math. Modelling Num. Anal. 37 (2003), 159–173. Zbl1137.35346MR1972656
  22. —————, Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements, Math. Modelling Num. Anal. 37 (2003), 227–240. Zbl1137.35347MR1991198
  23. Cedio-Fengya D.-J., Moskow S. et Vogelius M., Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems, 14 (1998) pp. 553–595. Zbl0916.35132MR1629995
  24. Cheney M., Isaacson D., Newell J., Simske S. et Goble J., Noser : an algorithm for solving the inverse conductivity problem, Int. J. Imaging Syst. and Technol. 22 (1990) pp. 66–75. 
  25. Coifman R.R., McIntosh A. et Meyer Y., L’intégrale de Cauchy définit un opérateur bourné sur L 2 pour courbes Lipschitziennes, Ann. of Math. 116 (1982) pp. 361–387. Zbl0497.42012
  26. Daubechies I., Ten Lectures on Wavelets, SIAM, Philadelphia, 1992. Zbl0776.42018MR1162107
  27. Dahlberg B.E., Kenig C.E. et Verchota G., Boundary value problem for the systems of elastostatics in Lipschitz domains, Duke Math. J. 57 (1988) pp. 795–818. Zbl0699.35073MR975122
  28. Escauriaza L., Fabes E. et Verchota G., On a regularity thoerem for weak solutions to transmission problems with internal Lipschitz boundaries, Proceedings of AMS 115 (1992) pp. 1069–1076. Zbl0761.35013MR1092919
  29. Escauriaza L. et Seo J.K., Regularity properties of solutions to transmission problems, Trans. Amer. Math. Soc. 338 (1993) pp. 405–430. Zbl0803.35019MR1149120
  30. Fabes E.B., Kang H. et Seo J.K., Inverse conductivity problem : error estimates and approximate identification for perturbed disks, SIAM J. of Math. Anal. 30 (1999) pp. 699–720. Zbl0930.35194MR1684722
  31. Friedman A. et Vogelius M., Identification of small inhomogeneities of extreme conductivity by boundary measurements : a theorem on continuous dependence, Arch. Rat. Mech. Anal. 105 ( 1989) pp. 299–326. Zbl0684.35087MR973245
  32. Kang H., Kim E. et Lee J., Identification of elastic inclusions and elastic moment tensors by boundary measurements, Inverse Problems 19 (2003), 703–724. Zbl1147.74323MR1984885
  33. Kang H., Kim E. et Kim K., Anistropic polarization tensors and determination of an anisotropic inclusion, SIAM J. Appl. Math. 65 (2003), 1276–1291. Zbl1126.78308MR1989903
  34. Kang H. et Seo J.K., Layer potential technique for the inverse conductivity problem, Inverse Problems 12 ( 1996) pp. 267–278. Zbl0857.35134MR1391539
  35. —————, Inverse conductivity problem with one measurement : uniqueness for balls in 3 , SIAM J. Appl. Math. 59 (1999) pp. 1533–1539. Zbl0931.35194MR1699026
  36. Kang H., Seo J. K. et Sheen D., The inverse conductivity problem with one measurement : Stability and estimation of size, SIAM J. Math. Anal. 28 (1997) pp. 1389–1405. Zbl0888.35131MR1474220
  37. Kleinman R.E. et Senior T.B.A., Rayleigh scattering in Low and High Frequency Asymptotics, edited by V.K. Varadan and V.V. Varadan, North-Holland (1986) pp. 1–70. MR901961
  38. Kohn R. et Vogelius M., Determining conductivity by boundary measurements. Comm. Pure Appl. Math. 37 (1984) pp. 289–298. II. Interior results, Comm. Pure Appl. Math. 38 (1985) pp. 643–667. Zbl0586.35089MR739921
  39. Kozlov S.M., On the domain of variation of added masses, polarization and effective characteristics of composites, J. Appl. Maths Mechs 56 (1992), 102–107. Zbl0786.76018MR1164415
  40. Kwon O. et Seo J.K., Total size estimation and identification of multiple anomalies in the inverse electrical impedance tomography, Inverse Problems 17 (2001) pp. 59–75. Zbl0972.35188MR1818492
  41. Kwon O., Seo J.K., et Yoon J.R., A real-time algorithm for the location search of discontinuous conductivities with one measurement, Commun. Pure Appl. Math. 55 (2002) pp. 1–29. Zbl1032.78005MR1857878
  42. Maz’ya V.G. et Nazarov S.A., The asymptotic behavior of energy integrals under small perturbations of the boundary near corner points and conical points, Trans. Moscow Math. Soc. (1988) pp. 77–127. Zbl0699.35072
  43. Movchan A.B. et Serkov S.K., The Pólya-Szegö matrices in asymptotic models of dilute composite, Euro. J. Appl. Math. 8 (1997) pp. 595–621. Zbl0899.73306MR1608611
  44. Nachman A., Global uniqueness for a two-dimensional inverse boundary value problem, Annals of Math. 143 (1996) pp. 71–96. Zbl0857.35135MR1370758
  45. Pólya G. et Szegö G., Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematical Studies Number 27, Princeton University Press, Princeton 1951. Zbl0044.38301MR43486
  46. Santosa F. et Vogelius M., A backprojection algorithm for electrical impedance imaging, SIAM J. Appl. Math. 50 (1990) pp. 216–243. Zbl0691.65087MR1036240
  47. Schiffer M., Sur la polarisation et la masse virtuelle, C. R. Acad. Sci. Paris 244 (1957), 3118–3121. Zbl0080.08301MR92009
  48. Schiffer M. et Szegö G., Virtual mass and polarization, Trans. Amer. Math. Soc. 67 (1949) pp. 130–205. Zbl0035.11803MR33922
  49. Seo J.K., Kwon O., Ammari H. et Woo E.J., Mathematical framework and anomaly estimation algorithm for breast cancer detection using TS2000 configuration, à paraître dans IEEE Trans. Biomedical Engineering (2004). 
  50. Sylvester J. et Uhlmann G., A global uniqueness theorem for an inverse boundary value problem, Annals of Math. 125 (1987) pp. 153–169. Zbl0625.35078MR873380
  51. Verchota G., Layer potentials and boundary value problems for Laplace’s equation in Lipschitz domains, J. Func. Anal. 59 ( 1984) pp. 572–611. Zbl0589.31005
  52. Vogelius M. et Volkov D., Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter, Math. Modelling Num. Anal. 34 (2000) pp. 723–748. Zbl0971.78004MR1784483

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.