Approximations rationnelles du nombre π

Maurice Mignotte

Séminaire Delange-Pisot-Poitou. Théorie des nombres (1972-1973)

  • Volume: 14, Issue: 2, page G1-G5

How to cite

top

Mignotte, Maurice. "Approximations rationnelles du nombre π." Séminaire Delange-Pisot-Poitou. Théorie des nombres 14.2 (1972-1973): G1-G5. <http://eudml.org/doc/110831>.

@article{Mignotte1972-1973,
author = {Mignotte, Maurice},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
language = {fre},
number = {2},
pages = {G1-G5},
publisher = {Secrétariat mathématique},
title = {Approximations rationnelles du nombre π},
url = {http://eudml.org/doc/110831},
volume = {14},
year = {1972-1973},
}

TY - JOUR
AU - Mignotte, Maurice
TI - Approximations rationnelles du nombre π
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1972-1973
PB - Secrétariat mathématique
VL - 14
IS - 2
SP - G1
EP - G5
LA - fre
UR - http://eudml.org/doc/110831
ER -

References

top
  1. [1] Choong ( K.Y.), Daykin ( D.E.), Rathborne ( C.R.). - Rational approximations to π , Math. Comp., t. 25, 1971, p. 387-392. Zbl0221.10011
  2. [2] Khintchin ( A.Ya.) [KHINČIN (A. Ja.)]. - Continued fractions. - Chicago, Univ. of Chicago Press , 1964 (Phoenix Science Series). Zbl0117.28601MR161833
  3. [3] Lambert ( J.). - Mémoire sur quelques propriétés remarquables des quantités transcendantes circulaires et logarithmiques, Mémoires Acad. Sc. Berlin, 1761 (publ. 1768), p. 265-322 ; Opera Mathematica, Vol. 2, p. 112-159. - Zürich, O. Füssli, 1948. 
  4. [4] Lindemann ( F.). - Sur le rapport de la circonférence du diamètre et sur les logarithmes népériens des nombres commensurables ou des irrationnelles algébriques, C. R. Acad. Sc. Paris, t. 95, 1882, p. 72-74. JFM14.0369.03
  5. [5] Mahler ( K.). - On the approximation of π , Proc. Nederl. Akad. Wet., Series A, t. 56(= Indag. Math., t. 15), 1953, p. 29-42. Zbl0053.36105
  6. [6] Mignotte ( M.). - Approximations rationnelles de π et quelques autres nombres, Journées arithmétiques de France [1973. Grenoble]. 
  7. [7] Pathria ( R.K.). - A statistical study of Randomness among the first 10,000 digits of π , Math. Comp., t. 16, 1962, p. 188-197. Zbl0106.13402
  8. [8] Ramanujan ( S.). - Modular equations and approximations to π , Quart. J. pure and applied Math., t. 45, 1914, p. 350-372 ; Collected papers of Srinivasa Ramanujan, p. 23-39. - Cambridge, at the University Press, 1927. Zbl45.1249.01JFM45.0688.02
  9. [9] Rosser ( J.B.) and Schoenfeld ( L.). - Approximate formules for some functions of prime numbers, Illinois J. Math., t. 6, 1962, p. 64-94. Zbl0122.05001MR137689
  10. [10] Shanks ( D.) and Wrench ( W.J. Jr). - Calculation of π to 100.000 decimals, Math. Comp., t. 16, 1962, p. 76-99. Zbl0104.36002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.