Amélioration de la constante de Šnirelman dans le problème de Goldbach

Jean-Marc Deshouillers

Séminaire Delange-Pisot-Poitou. Théorie des nombres (1972-1973)

  • Volume: 14, Issue: 2, page 1-4

How to cite

top

Deshouillers, Jean-Marc. "Amélioration de la constante de Šnirelman dans le problème de Goldbach." Séminaire Delange-Pisot-Poitou. Théorie des nombres 14.2 (1972-1973): 1-4. <http://eudml.org/doc/110832>.

@article{Deshouillers1972-1973,
author = {Deshouillers, Jean-Marc},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
language = {fre},
number = {2},
pages = {1-4},
publisher = {Secrétariat mathématique},
title = {Amélioration de la constante de Šnirelman dans le problème de Goldbach},
url = {http://eudml.org/doc/110832},
volume = {14},
year = {1972-1973},
}

TY - JOUR
AU - Deshouillers, Jean-Marc
TI - Amélioration de la constante de Šnirelman dans le problème de Goldbach
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1972-1973
PB - Secrétariat mathématique
VL - 14
IS - 2
SP - 1
EP - 4
LA - fre
UR - http://eudml.org/doc/110832
ER -

References

top
  1. [1] Blanchard ( A.). - Initiation à la théorie analytique des nombres premiers. - Paris, Dunod1969 (Travaux et Recherches mathématiques, 19). Zbl0198.37602MR244170
  2. [2] Halberstam ( H. ) and Richert ( K.F. ) . - Mean-value theorems for a class of arithmetical functions, Acta Arith., Warszawa, t. 18, 1971, p. 243-256. Zbl0217.32002MR289435
  3. [3] Halberstam ( H.) and Roth ( K.F.). - Sequences, Vol 1. - Oxford, at the Clarendon Press, 1966. Zbl0141.04405MR210679
  4. [4] Hanson ( D. ) . - On the product of the primes, Canad. Math. Bull., t. 15, 1972, p. 33-38. Zbl0231.10008MR313179
  5. [5] Klimov ( N.I.). - On the computation of Šnirelman's constant, Volž. Mat. Sb. Vyp. , t. 7, 1969, p. 32-40. MR289443
  6. [6] Rosser ( J.) and Schoenfeld ( L.). - Approximate formules for some functions of prime numbers, Illinois J. Math., t. 6, 1962, p. 64-94. Zbl0122.05001MR137689
  7. [7] Schnirelman [ŠNIRELMAN] ( L.). - Über additive Eigenschaften von Zahlen, Math. Annalen, t. 107, 1933, p. 649-690. Zbl0006.10402MR1512821
  8. [8] Vinogradov ( I.M.). - Representation of an odd number as a sum of three primes, Doklady Akad. Nauk SSSR, t. 15, 1937, p. 291-294. Zbl0016.29101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.