Sur l’équation diophantienne
Séminaire Delange-Pisot-Poitou. Théorie des nombres (1974-1975)
- Volume: 16, Issue: 2, page G1-G8
Access Full Article
topHow to cite
topMoulin, Hervé. "Sur l’équation diophantienne $y^2 = x^3 + k$." Séminaire Delange-Pisot-Poitou. Théorie des nombres 16.2 (1974-1975): G1-G8. <http://eudml.org/doc/110894>.
@article{Moulin1974-1975,
author = {Moulin, Hervé},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
language = {fre},
number = {2},
pages = {G1-G8},
publisher = {Secrétariat mathématique},
title = {Sur l’équation diophantienne $y^2 = x^3 + k$},
url = {http://eudml.org/doc/110894},
volume = {16},
year = {1974-1975},
}
TY - JOUR
AU - Moulin, Hervé
TI - Sur l’équation diophantienne $y^2 = x^3 + k$
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1974-1975
PB - Secrétariat mathématique
VL - 16
IS - 2
SP - G1
EP - G8
LA - fre
UR - http://eudml.org/doc/110894
ER -
References
top- [1] Atkin ( A.O.L.) and Birch ( B.J.) [Editors]. - Computers in number theory. Proceedings of the Atlas symposium [2. 1969. Oxford]. - London and New York, Academic Press, 1971. Zbl0214.00106MR314733
- [2] Baker ( A.). - Contribution to the theory of diophantine equations, Phil. Trans. Royal Soc. London, Series A, t. 263, 1969, p. 173-208. Zbl0157.09702
- [3] Baker ( A.). - The diophantine equation y2 = ax3 + bx2 + cx + d , J. London math. Soc., t. 43, 1968, p. 1-9. Zbl0155.08701MR231783
- [4] Baker ( A.). - Linear forms in the logarithm of algebraic numbers, II., Mathematika, London, t. 14, 1967, p. 220-228. Zbl0161.05301MR220680
- [5] Baker ( A.). - Linear forms in the logarithm of algebraic numbers , IV., Mathematika, London, t. 15, 1968, p. 204-216. Zbl0169.37802MR258756
- [6] Borevič ( Z.I.) and Safarevič ( I.R.). - Number theory. Translated from the russian. - New York, Academic Press, 1966 (Pure and applied Mathematics, Academic Press, 20). Zbl0145.04902MR195803
- [7] Dickson ( L.E.). - History of the theory of numbers, Vol. 2. - Washington, Carnegie Institution of Washington, 1920.
- [8] Hemer ( O.). - Notes on the diophantine equation y2 - k = x3 , Arkiv för Mat., t. 3, 1954, p. 67-77. Zbl0055.03607MR61115
- [9] Lang ( S.). - Transcendental numbers and diophantine approximations, Bull. Amer, math. Soc., t. 77, 1971, p. 635-677. Zbl0218.10053MR289424
- [10] Mignotte ( M.). - Amélioration effective du théorème de Liouville, Séminaire Delange-Pisot-Poitou : Théorie des nombres, 15e année, 1973/74, n° G4, 5 p. Zbl0324.10026
- [11] Mordell ( L.J.). - Note on the integer solutions of the equation Ey2 = Ax3 + Bx2 + Cx + D , Messenger Math., t. 51, 1921, p. 169-171. JFM48.0140.02
- [12] Mordell ( L.J.). - Diophantine equations. - London, New York, Academic Press, 1969 (Pure and applied Mathematics, Academic Press, 30). Zbl0188.34503MR249355
- [13] Serre ( J.-P.). - Cours d'arithmétique. - Paris, Presses Universitaires de France, 1970 (Collection SUP. "Le Mathématicien", 2). Zbl0225.12002MR255476
- [14] Stark ( H.M.). - Effective estimates of solutions of some diophantine equations, Acta Arithm., Warszawa, t. 24, 1973, p. 251-259. Zbl0272.10010MR340175
- [15] Thue ( A.). - Über Annäherungswerte algebraischerZahlen J. reine und angew. Math., t. 135, 1909, p. 284-305. JFM40.0265.01
- [16] Weil ( A.). - Sur les courbes algébriques et les variétés qui s'en déduisent. - Paris, Hermann, 1948 (Act. scient, et Ind., 1041 ; Publ. Inst. Math. Univ. Strasbourg, 7). MR29522
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.