Sur l’équation diophantienne y 2 = x 3 + k

Hervé Moulin

Séminaire Delange-Pisot-Poitou. Théorie des nombres (1974-1975)

  • Volume: 16, Issue: 2, page G1-G8

How to cite

top

Moulin, Hervé. "Sur l’équation diophantienne $y^2 = x^3 + k$." Séminaire Delange-Pisot-Poitou. Théorie des nombres 16.2 (1974-1975): G1-G8. <http://eudml.org/doc/110894>.

@article{Moulin1974-1975,
author = {Moulin, Hervé},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
language = {fre},
number = {2},
pages = {G1-G8},
publisher = {Secrétariat mathématique},
title = {Sur l’équation diophantienne $y^2 = x^3 + k$},
url = {http://eudml.org/doc/110894},
volume = {16},
year = {1974-1975},
}

TY - JOUR
AU - Moulin, Hervé
TI - Sur l’équation diophantienne $y^2 = x^3 + k$
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1974-1975
PB - Secrétariat mathématique
VL - 16
IS - 2
SP - G1
EP - G8
LA - fre
UR - http://eudml.org/doc/110894
ER -

References

top
  1. [1] Atkin ( A.O.L.) and Birch ( B.J.) [Editors]. - Computers in number theory. Proceedings of the Atlas symposium [2. 1969. Oxford]. - London and New York, Academic Press, 1971. Zbl0214.00106MR314733
  2. [2] Baker ( A.). - Contribution to the theory of diophantine equations, Phil. Trans. Royal Soc. London, Series A, t. 263, 1969, p. 173-208. Zbl0157.09702
  3. [3] Baker ( A.). - The diophantine equation y2 = ax3 + bx2 + cx + d , J. London math. Soc., t. 43, 1968, p. 1-9. Zbl0155.08701MR231783
  4. [4] Baker ( A.). - Linear forms in the logarithm of algebraic numbers, II., Mathematika, London, t. 14, 1967, p. 220-228. Zbl0161.05301MR220680
  5. [5] Baker ( A.). - Linear forms in the logarithm of algebraic numbers , IV., Mathematika, London, t. 15, 1968, p. 204-216. Zbl0169.37802MR258756
  6. [6] Borevič ( Z.I.) and Safarevič ( I.R.). - Number theory. Translated from the russian. - New York, Academic Press, 1966 (Pure and applied Mathematics, Academic Press, 20). Zbl0145.04902MR195803
  7. [7] Dickson ( L.E.). - History of the theory of numbers, Vol. 2. - Washington, Carnegie Institution of Washington, 1920. 
  8. [8] Hemer ( O.). - Notes on the diophantine equation y2 - k = x3 , Arkiv för Mat., t. 3, 1954, p. 67-77. Zbl0055.03607MR61115
  9. [9] Lang ( S.). - Transcendental numbers and diophantine approximations, Bull. Amer, math. Soc., t. 77, 1971, p. 635-677. Zbl0218.10053MR289424
  10. [10] Mignotte ( M.). - Amélioration effective du théorème de Liouville, Séminaire Delange-Pisot-Poitou : Théorie des nombres, 15e année, 1973/74, n° G4, 5 p. Zbl0324.10026
  11. [11] Mordell ( L.J.). - Note on the integer solutions of the equation Ey2 = Ax3 + Bx2 + Cx + D , Messenger Math., t. 51, 1921, p. 169-171. JFM48.0140.02
  12. [12] Mordell ( L.J.). - Diophantine equations. - London, New York, Academic Press, 1969 (Pure and applied Mathematics, Academic Press, 30). Zbl0188.34503MR249355
  13. [13] Serre ( J.-P.). - Cours d'arithmétique. - Paris, Presses Universitaires de France, 1970 (Collection SUP. "Le Mathématicien", 2). Zbl0225.12002MR255476
  14. [14] Stark ( H.M.). - Effective estimates of solutions of some diophantine equations, Acta Arithm., Warszawa, t. 24, 1973, p. 251-259. Zbl0272.10010MR340175
  15. [15] Thue ( A.). - Über Annäherungswerte algebraischerZahlen J. reine und angew. Math., t. 135, 1909, p. 284-305. JFM40.0265.01
  16. [16] Weil ( A.). - Sur les courbes algébriques et les variétés qui s'en déduisent. - Paris, Hermann, 1948 (Act. scient, et Ind., 1041 ; Publ. Inst. Math. Univ. Strasbourg, 7). MR29522

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.