Sur la fonction plus grand facteur premier

Michel Langevin

Séminaire Delange-Pisot-Poitou. Théorie des nombres (1974-1975)

  • Volume: 16, Issue: 2, page G1-G29

How to cite

top

Langevin, Michel. "Sur la fonction plus grand facteur premier." Séminaire Delange-Pisot-Poitou. Théorie des nombres 16.2 (1974-1975): G1-G29. <http://eudml.org/doc/110899>.

@article{Langevin1974-1975,
author = {Langevin, Michel},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
keywords = {greatest prime factor function},
language = {fre},
number = {2},
pages = {G1-G29},
publisher = {Secrétariat mathématique},
title = {Sur la fonction plus grand facteur premier},
url = {http://eudml.org/doc/110899},
volume = {16},
year = {1974-1975},
}

TY - JOUR
AU - Langevin, Michel
TI - Sur la fonction plus grand facteur premier
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1974-1975
PB - Secrétariat mathématique
VL - 16
IS - 2
SP - G1
EP - G29
LA - fre
KW - greatest prime factor function
UR - http://eudml.org/doc/110899
ER -

References

top
  1. [1] Baker ( A.). - Transcendental number theory. - Cambridge, Cambridge University Press, 1975. Zbl0297.10013MR422171
  2. [2] Birkhoff ( G.D.) and Vandiver ( H.S.). - On the integral divisors of an-bn , Annals of Math., Series 2, t. 5, 1904, p. 173-180. MR1503541JFM35.0205.01
  3. [3] Cassels ( J.W.S.). - An introduction to diophantine approximation. 2nd edition. - Cambridge, Cambridge University Press, 1965. MR87708
  4. [4] Cassels ( J.W.S.). - On a class of exponential equations, Arkiv. für Math., t. 4, 1963, p. 231-233. Zbl0102.03507MR130217
  5. [5] Catalan ( E.). - Note extraite d'une lettre adressée à l'éditeur, J. reine angew. Math., t. 27, 1844, p. 192. 
  6. [6] Chowla ( S.). - The greastest prime factor of x2 + 1 , J. London math. Soc., t. 10, 1935, p. 117-120. Zbl0011.29305
  7. [7] Cramer ( H.). - On the order of magnitude of the difference between consecutive prime numbers, Acta Arithm., Warszawa, t. 2, 1937, p. 23-46. JFM62.1147.01
  8. [8] Deshouillers ( J.M.). - Le théorème de Sylvester et Schur (dactylographié). 
  9. [9] Erdös ( P.). - A theorem of Sylvester and Schur, J. London math. Soc., t. 9, 1934, p. 282-288. Zbl0010.10302
  10. [10] Erdös ( P.). - On consecutive integers, Nieuw Arch. voor Wisk., t. 3, 1955, p. 124-128. Zbl0065.27605MR73628
  11. [11] Erdös ( P.). - On the normal number of prime factors of p - 1 and some related problems concerning Euler Ø-function, Quaterly J. of Math., t. 6, 1935, p. 203-213. Zbl0012.14905JFM61.0129.05
  12. [12] Erdös ( P.). - On the greatest prime factor of Πxk=1 f(k) , J. London math. Soc., t. 27, 1952, p. 379-384. Zbl0046.04102
  13. [13] Erdös ( P.). - Some problems in number theory, "Computers in number theory", Proceedings of a symposium held at Oxford, 1969, p. 405-414. - London, New York, Academic Press, 1971. Zbl0217.03101
  14. [14] Erdös ( P.) and Selfridge ( J.L.). - Some problems on the prime factors of consecutive integers, II, "Proceedings Washington State University Conference of number theory, Pullman1971" (à paraître). Zbl0228.10028MR318076
  15. [15] Erdös ( P.) and Shorey ( T.N.). - On the greastest prime factor of 2P - 1 for a prime p and other expressions, Acta Arithm., Warszawa (à paraître). Zbl0296.10021
  16. [16] Fel'dman ( N.I.). - Improved estimate for a linear form of the logarithms of algebraic numbers, Math. of the USSR-Sbornik, t. 6, 1968, p. 393-406 ; [en russe] Mat. Sbornik, N. S., t. 77, 1968, p. 423-436. Zbl0235.10018
  17. [17] Gel'fond ( A.O.). - Transcendental and algebraic numbers. - New York, Dover Publications, 1960. Zbl0090.26103MR111736
  18. [18] Halberstam ( H.). - On the distribution of additive number theoretic function, II and III., J. London math. Soc., t. 31, 1956, p. 1-11, 14-31. Zbl0071.04203MR73626
  19. [19] Halberstam ( H.). - Numbers with a large prime factors, Séminaire de Théorie des nombres de l'Université de Bordeaux, 1971/72, exp. 23. Zbl0274.10041
  20. [20] Hall ( Marshall Jr.). - The diophantine equation x3 - y2 = k , "Computers in number theory", Proceedings of a symposium held at Oxford, 1969, p. 173-198. - London, New York, Academic Press, 1971. Zbl0225.10012MR323705
  21. [21] Hanson ( D.). - On the product of the primes, Canad. math. Bull., t. 15, 1972, p. 33-37. Zbl0231.10008MR313179
  22. [22] Hardy ( G.H.) and Wright ( E.M.). - An introduction to the theory of numbers, 4th edition. - Oxford, Clarendon Press, 1959. Zbl0086.25803MR67125
  23. [23] Huxley ( M.N.). - On the difference between consecutive primes, Inventiones Math., Berlin, t. 15, 1972, p. 164-170. Zbl0241.10026MR292774
  24. [24] Jutila ( M.). - On numbers with a large prime factor, Indian J. of Math. (à paraître). Zbl0293.10023
  25. [25] Kotov ( S.V.). - The greatest prime factor of a polynomial, Math. Notes, t. 13, 1973, p. 313-317 ; [en russe], Mat. Zametki, t. 13, 1973, p. 515-522. Zbl0267.12002MR327670
  26. [26] Landau ( E.). - Primzahlen. - New York, Chelsea publishing Company, 1953. MR68565
  27. [27] Langevin ( M.). - Plus grand facteur premier d'entiers consécutifs, C. R. Acad. Sc. Paris, t. 280, 1975, Série A, p. 1567-1570. Zbl0305.10041MR379403
  28. [28] Langevin ( M.). - Plus grand facteur premier d'entiers voisins, C. R. Acad. Sc. Paris (à paraître). Zbl0311.10044
  29. [29] Lehmer ( D.H.). - On a problem of Störmer, Illinois J. Math., t. 8, 1964, p. 57-79. Zbl0124.27202MR158849
  30. [30] Mahler ( K.). - Zur approximation algebraischer Zahlen, I und II., Math. Annalen, t. 107, 1933, p. 691-730, t. 108,1933, p. 37-55. Zbl0006.10502MR1512822
  31. [31] Mahler ( K.). - Über den grössten Primteiler der Polynome x2 ∓ 1 , Archiv for Math. og Naturvid, t. 41, 1935, n° 1, 8 p. Zbl0012.39405
  32. [32] Mahler ( K.). - Über den grössten Primteiler spezieller Polynome zweiten Grades, Arch. for Math. og Naturvid., t. 41, 1935, n° 6, 26 p. Zbl0013.38903
  33. [33] Mahler ( K.). - On the greatest prime factor of axm + byn , Nieuw Archief voor Wiskunde, 3e série, t. 1, 1953, p. 113-122. Zbl0050.26804MR57899
  34. [34] Mordell ( L.J.). - Diophantine Equations. - London, New York, Academic Press, 1969 (Pure and applied Mathematics, Academic Press, 30). Zbl0188.34503MR249355
  35. [35] Nagell ( T.). - Über den grössten Primteiler gewisser Polynome dritten Grades, Math. Annalen, t. 114, 1937, p. 284-292. Zbl0016.10104MR1513139
  36. [36] Perron ( O.). - Die Lehre von den Kettenbruchen, 3te Auflage. Band 1. - Stuttgart, B. G. Teubner, 1954. Zbl0056.05901MR64172
  37. [37] Polya ( G.). - Zur arithmetischen Untersuchung der Polynome, Math. Z., t. 1, 1918, p. 143-148. MR1544288JFM46.0240.04
  38. [38] Prachar ( K.). - Primzahlverteilung. - Berlin, Springer-Verlag, 1957 (Grundlehren der mathematischen Wissenschaften, 91). Zbl0080.25901MR87685
  39. [39] Ramachandra ( K.). -Largest prime factor of the product of k-consecutive integers, "Proceedings of the international conference on number theory, Moscou, 1971" (à paraître). MR337831
  40. [40] Ramachandra ( K.). - A note on numbers with a large prime factor, III., Acta Arithm., Warszawa, t. 19, 1971, p. 49-62. Zbl0218.10058MR299569
  41. [41] Ramachandra ( K.). - Application of Baker's theory to two problems considered by Erdös and Selfridge, J. Indian math. Soc., t. 37, 1973, p. 25-34. Zbl0326.10038MR364121
  42. [42] Ramachandra ( K.). and Shorey ( T.N.). - On gaps between numbers with a large prime factor, Acta Arithm., Warszawa, t. 24, 1973, p. 99-111. Zbl0258.10022MR327684
  43. [43] Rankin ( R.A.). - The difference between consecutive prime numbers, J. London math. Soc., t. 13, 1938, p. 232-247 ; et Proc. Edinburgh math. Soc., t. 13, 1963, p. 331-332. Zbl0019.39403MR160767JFM64.0982.01
  44. [44] Schinzel ( A.). - On two theorems of Gel'fond and some of their applications, Acta Arithm., Warszawa, t. 13, 1967, p. 177-236. Zbl0159.07101MR222034
  45. [45] Schinzel ( A.). - On primitive prime factors of an - bn , Proc. Cambridge phil. Soc., t. 58, 1962, p. 555-562. Zbl0114.02605MR143728
  46. [46] Schmidt ( W.). - Approximation to algebraic numbers. - Genève, l'Enseignement mathématique, 1972 (Monographies de l'Enseignement mathématique, 19). MR344203
  47. [47] Schönhage ( A.). - Eine Bemerkung zur Konstruktion grosser Primzahllücken, Arch. der Math., t. 14, 1963, p. 29-30. Zbl0108.04504MR146154
  48. [48] Schur ( J.). - Einige Sätze über Primzahlen mit Anwendung auf Irreduzibilitätsfragen, Sitz. der Preuss. Akad. Wiss., Phys. Math. Klasse, t. 23, 1929, p. 1-24. JFM55.0069.03
  49. [49] Shorey ( T.N.). - On gaps between numbers with a large prime factor, II., Acta Arithm., Warszawa, t. 25, 1974, p. 365-373. Zbl0258.10023MR344201
  50. [50] Shorey ( T.N.). - On linear forms in the logarithms of algebraic numbers, Acta Arithm., Warszawa (à paraître). Zbl0289.10023
  51. [51] Shorey ( T.N.) and Tijdeman ( R.). - On the greatest prime factor of polynomials at integer points, Acta Arithm., Warszawa (à paraître). 
  52. [52] Siegel ( C.L.). - Approximation algebraischen Zahlen, Math. Z., t. 10, 1921, p. 173-213. MR1544471JFM48.0163.07
  53. [53] Siegel ( C.L.). - The integer solutions of the equation y2=axn+bxn-1+...+k , (extrait d'une lettre à L. J. Mordell), J. London math. Soc., t. 1, 1926, p. 66-68. 
  54. [54] Sprindžuk ( V.G.). - An improvement of the estimate of rational approximations to algebraic numbers, Dokl. Akad. Nauk Belorusskoj SSR, t. 15, 1971, p. 101-104. MR292763
  55. [55] Sprindžuk ( V.G.). - Diviseurs sans facteurs carrés des polynômes et nombre de classes des corps de nombres algébriques [en russe], Acta Arithm., Warszawa, t. 24, 1973, p. 143-149. 
  56. [56] Stark ( H.M.). - Effective estimates of solutions of some diophantine equations, Acta Arithm., Warszawa, t. 24, 1973, p. 251-259. Zbl0272.10010MR340175
  57. [57] Stewart ( C.L.). - The greatest prime factor of an - bn , Acta Arithm., Warszawa, (à paraître). Zbl0313.10007
  58. [58] Størmer ( C.). - Quelques théorèmes sur l'équation de Pell x2-Dy2=±1 et leurs applications, Christiana Videnskabsselskabs Skrifter, Mat. Naturv. Kl., 1897, n° 2, 48 p. JFM28.0192.02
  59. [59] Sylvester ( J.J.). - On arithmetical series, Messenger of Math., t. 21, 1892, p. 1-19, 87-120. JFM23.0181.02
  60. [60] Tijdeman ( R.). - Old and new in number theory, Nieuw Arch. voor Wiskunde, 3e série, t. 20, 1972, p. 20-30. Zbl0227.10001MR300983
  61. [61] Tijdeman ( R.). - On integers with many small prime factors, Comp. Math., Groningen, t. 26, 1973, p. 319-330. Zbl0267.10056MR325549
  62. [62] Tijdeman ( R.). - On the maximal distance between integers composed of small primes, Comp. Math., Groningen, t. 28, 1974, p. 159-162. Zbl0283.10024MR345917
  63. [63] Tijdeman ( R.) and Meijer ( H.G.). - On integers generated by a finite number of fixed primes, Comp. Math., Groningen, t. 29, 1974, p. 273-286. Zbl0297.10030MR364122
  64. [64] Tijdeman ( R.). - On the equation of Catalan, Acta Arithm., Warszawa (à paraître). Zbl0286.10013
  65. [65] Tuckerman ( B.). - The 24th Mersenne prime, Notices Amer. math. Soc., t. 18, 1971, p. 608. Zbl0224.10006MR291072
  66. [66] Poorten ( A. van der). - A p-adic analogue of an inequality of Baker for linear forms in the logarithms of algebraic numbers, Austral. J. of Math (à paraître). 
  67. [67] Waldschmidt ( M.). - Minorations effectives de formes linéaires de logarithmes, Séminaire Delange-Pisot-Poitou : Groupe d'étude de théorie des nombres, 15e année, 1973/74, n° G3, 8 p. Zbl0324.10028
  68. [68] Zsigmondy ( K.). - Zur Theorie der Potenzreste, Monatsh. Math., t. 3, 1892, p. 265-284. JFM24.0176.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.