Existence et comportement asymptotique en temps des solutions de Navier-Stokes Coriolis dans une bande tridimensionnelle

Violaine Roussier-Michon[1]

  • [1] Département de mathématique, Université Paris-Sud, Bat 425, F-91405 Orsay Cedex, France

Séminaire Équations aux dérivées partielles (2003-2004)

  • Volume: 2003-2004, page 1-16

How to cite

top

Roussier-Michon, Violaine. "Existence et comportement asymptotique en temps des solutions de Navier-Stokes Coriolis dans une bande tridimensionnelle." Séminaire Équations aux dérivées partielles 2003-2004 (2003-2004): 1-16. <http://eudml.org/doc/11090>.

@article{Roussier2003-2004,
affiliation = {Département de mathématique, Université Paris-Sud, Bat 425, F-91405 Orsay Cedex, France},
author = {Roussier-Michon, Violaine},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-16},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Existence et comportement asymptotique en temps des solutions de Navier-Stokes Coriolis dans une bande tridimensionnelle},
url = {http://eudml.org/doc/11090},
volume = {2003-2004},
year = {2003-2004},
}

TY - JOUR
AU - Roussier-Michon, Violaine
TI - Existence et comportement asymptotique en temps des solutions de Navier-Stokes Coriolis dans une bande tridimensionnelle
JO - Séminaire Équations aux dérivées partielles
PY - 2003-2004
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2003-2004
SP - 1
EP - 16
LA - fre
UR - http://eudml.org/doc/11090
ER -

References

top
  1. Babin A. & Mahalov A. & Nicolaenko B. Global regularity of 3D rotating Navier-Stokes equations for resonant domains, Indiana University Mathematics Journal, 1999, 48, 1133-1176. Zbl0932.35160MR1736966
  2. Carpio A. Asymptotic behavior for the vorticity equations in dimensions two and three. Comm. Partial Differential Equations, 1994, 19(5-6), 827-872. Zbl0816.35108MR1274542
  3. Charve F. Convergence de solutions faibles du système primitif des équations quasigéostrophiques, Prépublication du CMLS de l’Ecole Polytechnique 2003-04. 
  4. Chemin J.Y. & Desjardins B. & Gallagher I. & Grenier E. Basics of Mathematical Geophysics, Prépublication du CMLS de l’Ecole Polytechnique 2004-04. Zbl1205.86001
  5. Desjardins B. & Grenier E. On the homogeneous model of wind-driven ocean circulation, SIAM J. Appl. Math., 2000, 60, 43-60. Zbl0958.76092MR1740834
  6. Fujita H. & Kato T. On the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 1964, 16 269-315. Zbl0126.42301MR166499
  7. Gallagher I. Asymptotics of the solutions of hyperbolic equations with a skew-symmetric perturbation, J. of Diff. Eq., 1998, 150, 363-384 Zbl0921.35095MR1658597
  8. Giga Y. & Kambe T. Large time behavior of the vorticity of the two-dimensional viscous flow and its application to vortex formation. Commun. Math. Phys., 1988, 117(4), 549-568. Zbl0661.76018MR953819
  9. Gallay T. & Wayne C.E. Invariant Manifolds and the Long-Time Asymptotics of the Navier-Stokes and Vorticity Equations on 2 . Arch. Rational Mech. Anal., 2002, 163(3), 209-258. Zbl1042.37058MR1912106
  10. Gallay T. & Wayne C.E. Global stability of vortex solutions of the two-dimensional Navier-Stokes equation, Prépublication de l’Institut Fourier, 2003. Zbl1139.35084
  11. Leray J. Essai sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Matematica, 1933, 63, 193-248. Zbl59.0763.02
  12. Iftimié D. Approximation of the quasigeostrophic system with the primitiv system, Asymptotic Analysis, 1999, 21, 89-97. Zbl0939.35152MR1723567
  13. Lions J.L & Temam R. & Wang S. Geostrophic asymptotics of the primitiv equations of the atmosphere, Topological Methods in Non Linear Analysis, 1994, 4, 1-35. Zbl0846.35106MR1350974
  14. Pedlovsky J. Geophysical Fluid Dynamics, 2nd edition, Springer Verlag, NY, 1987. Zbl0713.76005
  15. Roussier V. Long-Time Asymptotics of Navier-Stokes and Vorticity equations in a three-dimensional Layer, à paraî tre dans Comm. Partial Differential Equations. Zbl1104.35041
  16. Roussier-Michon V. Sur la stabilité des Ondes Sphériques et le Mouvement d’un Fluide entre deux Plaques Infinies, Thèse de l’Université Paris XI Orsay, 2003. 
  17. Schonbek M.E. Large time behaviour of solutions to the Navier-Stokes Equations. Comm. Partial Differential Equations 1986, 11(7), 733-763. Zbl0607.35071MR837929
  18. Temam R. & Ziane M. Navier-Stokes equations in thin spherical domains, Optimization methods in PDE’s, Contemp. Math., 209, Amer. Math. Soc., 1997, 281-314 Zbl0891.35119
  19. Wiegner M. Decay results for weak solutions of the Navier-Stokes equations on n . J. Lond. Math. Soc., II Ser. 1987, 35(2), 303-313. Zbl0652.35095MR881519

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.