Construction of continuous idele class characters in quadratic number fields, and imbedding problems for dihedral and quaternion fields

Franz Halter-Koch

Séminaire Delange-Pisot-Poitou. Théorie des nombres (1975-1976)

  • Volume: 17, Issue: 1, page 1-13

How to cite

top

Halter-Koch, Franz. "Construction of continuous idele class characters in quadratic number fields, and imbedding problems for dihedral and quaternion fields." Séminaire Delange-Pisot-Poitou. Théorie des nombres 17.1 (1975-1976): 1-13. <http://eudml.org/doc/110912>.

@article{Halter1975-1976,
author = {Halter-Koch, Franz},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
keywords = {Imbedding Problem; Galois Extension; Grunwald-Wang Theorem; Idele Class Character; Class Field Theory; Local-Global Principle},
language = {eng},
number = {1},
pages = {1-13},
publisher = {Secrétariat mathématique},
title = {Construction of continuous idele class characters in quadratic number fields, and imbedding problems for dihedral and quaternion fields},
url = {http://eudml.org/doc/110912},
volume = {17},
year = {1975-1976},
}

TY - JOUR
AU - Halter-Koch, Franz
TI - Construction of continuous idele class characters in quadratic number fields, and imbedding problems for dihedral and quaternion fields
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1975-1976
PB - Secrétariat mathématique
VL - 17
IS - 1
SP - 1
EP - 13
LA - eng
KW - Imbedding Problem; Galois Extension; Grunwald-Wang Theorem; Idele Class Character; Class Field Theory; Local-Global Principle
UR - http://eudml.org/doc/110912
ER -

References

top
  1. [1] Damey ( P.) et Martinet ( J.). - Plongement d'une extension quadratique dans une extension quaternionienne, J. für reine und angew. Math., t. 262/263, 1973, p. 323-338. Zbl0297.12010MR330104
  2. [2] Fröhlich ( A.). - A rational characterisation of certain sets of relatively abelian extensions, Phil. Trans. royal Soc. London, Series A, t. 251, 1959, p. 385-425. Zbl0098.03402MR108480
  3. [3] Halter-Koch ( F.). - Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe, J. of Number Theory, t. 3, 1971, p. 412-443. Zbl0229.12006MR285511
  4. [4] Halter-Koch ( F.). - Einseinheitengruppen und prime Restklassengruppen in quadratischen Zahlkörpern, J. of Number Theory, t. 4, 1972, p. 70-77. Zbl0229.12004MR296045
  5. [5] Hasse ( H.). - Zahlentheorie. 3te Aufl. - Berlin, Akademie Verlag, 1970. 
  6. [6] Hasse ( H.). - Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage, Math. Z., t. 31, 1930, p. 565-582. Zbl56.0167.02MR1545136JFM56.0167.02
  7. [7] Neukirch ( J.). - Über das Einbettungsproblem der algebraischen Zahlentheorie, Invent. Math., t. 21, 1973, p. 59-116. Zbl0267.12005MR337894
  8. [8] Poitou ( G.). - Einbettungsprobleme mit abelschem Kern, Oberwolfach, 1975. 
  9. [9] Porusch ( I.). - Arithmetik in Zahlkörpern, deren zugehörige Galoissche Körper spezielle metabelsche Gruppen besitzen, auf klassenkörpertheoretischer Grundlage, Math. Z., t. 37, 1933, p. 134-160. Zbl0006.25203MR1545387JFM59.0945.02
  10. [10] Richter ( H.). - Über die Lösbarkeit einiger nicht-abelscher Einbettungsprobleme, Math. Annalen, t. 112, 1936, p. 700-726. Zbl0014.24803MR1513070
  11. [11] Rosenbluth ( E.). - Die arithmetische Theorie und Konstruktion der Quaternionenkörper auf klassenkörpertheoretischer Grundlage, Monatsh. Math. Phys., t. 41, 1934, p. 85-125. Zbl0009.39202
  12. [12] Tate ( J.). - Global class field theory, "Algebraic number theory", p. 162-203. - New York, Academic Press, 1967. Zbl1179.11041MR220697

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.