The polynomial x 3 + x 2 + x - 1 and elliptic curves of conductor 11

Alfred J. Van der Poorten

Séminaire Delange-Pisot-Poitou. Théorie des nombres (1976-1977)

  • Volume: 18, Issue: 2, page 1-7

How to cite

top

Van der Poorten, Alfred J.. "The polynomial $x^3 + x^2 + x - 1$ and elliptic curves of conductor 11." Séminaire Delange-Pisot-Poitou. Théorie des nombres 18.2 (1976-1977): 1-7. <http://eudml.org/doc/110975>.

@article{VanderPoorten1976-1977,
author = {Van der Poorten, Alfred J.},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
language = {eng},
number = {2},
pages = {1-7},
publisher = {Secrétariat mathématique},
title = {The polynomial $x^3 + x^2 + x - 1$ and elliptic curves of conductor 11},
url = {http://eudml.org/doc/110975},
volume = {18},
year = {1976-1977},
}

TY - JOUR
AU - Van der Poorten, Alfred J.
TI - The polynomial $x^3 + x^2 + x - 1$ and elliptic curves of conductor 11
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1976-1977
PB - Secrétariat mathématique
VL - 18
IS - 2
SP - 1
EP - 7
LA - eng
UR - http://eudml.org/doc/110975
ER -

References

top
  1. [1] Agrawal ( M.) and Coates ( J.). - Elliptic curves of conductor11 (unpublished manuscript, 1971). 
  2. [2] Baker ( A.). - The theory of linear forms in logarithms, "Transcendence theory : Advances and applications. Ed. A. Baker and D. Masser", Chap. 1, p. 1- 27. - London, Academic Press, 1977. Zbl0361.10028MR498417
  3. [3] Baker ( A.) and Davenport ( H.). - The equations 3x2 - 2 = y2 and 8x2 - 7 = z2, Quart. J. Math., Oxford2nd Series, t. 20, 1969, p. 129-137. Zbl0177.06802MR248079
  4. [4] Delone ( B.N.) and Fadeev ( D.K.). - The theory of irrationalities of the third degree. - Providence, American mathematical Society, 1964. Zbl0133.30202MR160744
  5. [5] Ellison ( W.J.). - Recipes for solving diophantine problems by Baker's method, Publications mathématiques de Bordeaux, 1re année, 1972, fasc. 1. 
  6. [6] Mahler ( K.). - Lectures on diophantine approximations. - Ann Arbor, University of Notre-Dame, 1961. Zbl0158.29903MR142509
  7. [7] Serre ( J.-P.). - Représentations abéliennes modulo 1 et applications (à paraître). 
  8. [8] Setzer ( C.B.). - Elliptic curves of prime conductor, Ph. D. Thesis, Harvard University, Cambridge, 1972. 
  9. [9] Szekeres ( G.). - Multidimensional continued fractions, Annales Univ. Sc. Budapest, Sectio Math., t. 13, 1970, p. 113-140. Zbl0214.30101MR313198
  10. [10] Poorten ( A. J. van der). - Linear forms in logarithms in the p-adic case, "Transcendence theory : Advances and applications. Ed. A. Baker and D. Masser", chap. 2, p. 29-57. - London, Academic Press, 1977. MR498418
  11. [11] Waldschmidt ( M.). - A lower bound for linear forms in logarithms (a preliminary draft). 
  12. [12] Weil ( A.). - Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Annalen, t. 168, 1967, p. 149-156. Zbl0158.08601MR207658

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.