The polynomial and elliptic curves of conductor 11
Séminaire Delange-Pisot-Poitou. Théorie des nombres (1976-1977)
- Volume: 18, Issue: 2, page 1-7
Access Full Article
topHow to cite
topVan der Poorten, Alfred J.. "The polynomial $x^3 + x^2 + x - 1$ and elliptic curves of conductor 11." Séminaire Delange-Pisot-Poitou. Théorie des nombres 18.2 (1976-1977): 1-7. <http://eudml.org/doc/110975>.
@article{VanderPoorten1976-1977,
author = {Van der Poorten, Alfred J.},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
language = {eng},
number = {2},
pages = {1-7},
publisher = {Secrétariat mathématique},
title = {The polynomial $x^3 + x^2 + x - 1$ and elliptic curves of conductor 11},
url = {http://eudml.org/doc/110975},
volume = {18},
year = {1976-1977},
}
TY - JOUR
AU - Van der Poorten, Alfred J.
TI - The polynomial $x^3 + x^2 + x - 1$ and elliptic curves of conductor 11
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1976-1977
PB - Secrétariat mathématique
VL - 18
IS - 2
SP - 1
EP - 7
LA - eng
UR - http://eudml.org/doc/110975
ER -
References
top- [1] Agrawal ( M.) and Coates ( J.). - Elliptic curves of conductor11 (unpublished manuscript, 1971).
- [2] Baker ( A.). - The theory of linear forms in logarithms, "Transcendence theory : Advances and applications. Ed. A. Baker and D. Masser", Chap. 1, p. 1- 27. - London, Academic Press, 1977. Zbl0361.10028MR498417
- [3] Baker ( A.) and Davenport ( H.). - The equations 3x2 - 2 = y2 and 8x2 - 7 = z2, Quart. J. Math., Oxford2nd Series, t. 20, 1969, p. 129-137. Zbl0177.06802MR248079
- [4] Delone ( B.N.) and Fadeev ( D.K.). - The theory of irrationalities of the third degree. - Providence, American mathematical Society, 1964. Zbl0133.30202MR160744
- [5] Ellison ( W.J.). - Recipes for solving diophantine problems by Baker's method, Publications mathématiques de Bordeaux, 1re année, 1972, fasc. 1.
- [6] Mahler ( K.). - Lectures on diophantine approximations. - Ann Arbor, University of Notre-Dame, 1961. Zbl0158.29903MR142509
- [7] Serre ( J.-P.). - Représentations abéliennes modulo 1 et applications (à paraître).
- [8] Setzer ( C.B.). - Elliptic curves of prime conductor, Ph. D. Thesis, Harvard University, Cambridge, 1972.
- [9] Szekeres ( G.). - Multidimensional continued fractions, Annales Univ. Sc. Budapest, Sectio Math., t. 13, 1970, p. 113-140. Zbl0214.30101MR313198
- [10] Poorten ( A. J. van der). - Linear forms in logarithms in the p-adic case, "Transcendence theory : Advances and applications. Ed. A. Baker and D. Masser", chap. 2, p. 29-57. - London, Academic Press, 1977. MR498418
- [11] Waldschmidt ( M.). - A lower bound for linear forms in logarithms (a preliminary draft).
- [12] Weil ( A.). - Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Annalen, t. 168, 1967, p. 149-156. Zbl0158.08601MR207658
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.