Une suite récurrente remarquable

Marcel Duboué

Séminaire Delange-Pisot-Poitou. Théorie des nombres (1977-1978)

  • Volume: 19, Issue: 2, page 1-12

How to cite

top

Duboué, Marcel. "Une suite récurrente remarquable." Séminaire Delange-Pisot-Poitou. Théorie des nombres 19.2 (1977-1978): 1-12. <http://eudml.org/doc/111014>.

@article{Duboué1977-1978,
author = {Duboué, Marcel},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
keywords = {monic polynomial; recursive sequence; discriminant},
language = {fre},
number = {2},
pages = {1-12},
publisher = {Secrétariat mathématique},
title = {Une suite récurrente remarquable},
url = {http://eudml.org/doc/111014},
volume = {19},
year = {1977-1978},
}

TY - JOUR
AU - Duboué, Marcel
TI - Une suite récurrente remarquable
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1977-1978
PB - Secrétariat mathématique
VL - 19
IS - 2
SP - 1
EP - 12
LA - fre
KW - monic polynomial; recursive sequence; discriminant
UR - http://eudml.org/doc/111014
ER -

References

top
  1. [1] Backstrom ( R.P.). - On the determination of the zeros of the Fibonacci sequence, Fibonacci Quart., t. 4, 1966, p. 313-322. Zbl0151.02405MR205909
  2. [2] Berwick ( W.E.H.). - Integral bases. - Cambridge, Cambridge University Press, 1927 (Cambridge Tracts in Mathematics and mathematical Physics, 22). JFM53.0142.01
  3. [3] Carmichaël ( R.D.). - A simple principle of unification in the elementary theory of numbers, Amer. math. Monthly, t. 36, 1929, p. 132-143. Zbl55.0685.05MR1521682JFM55.0685.05
  4. [4] Delone ( B.N.), Fadeev ( D.K.). - The theory of irrationalities of the third degree. - Providence, American mathematical Society, 1964 (translation of mathematical Monographs, 10). Zbl0133.30202MR160744
  5. [5] Dickson ( L.E.). - History of the theory of numbers. - New York, Chelsea Publishing Company, 1966. 
  6. [6] Horadam ( A.F.). - Basic properties of a certain generalized sequence of numbers, Fibonacci Quart., t. 3, 1965, p. 161-176. Zbl0131.04103MR186615
  7. [7] Jarden ( D.). - Recurring sequences. - Jerusalem, Riveon Lematematika, 1958. 
  8. [8] Lucas ( E.). - Théorie des nombres. Nouveau tirage. - Paris, A. Blanchard, 1961, Zbl0464.10001MR123503
  9. [9] Raney ( G.N.). - Generalization of the Fibonacci sequence to n dimensions, Canad. J. Math., t. 18, 1966, p. 332-349. Zbl0151.02406MR191869
  10. [10] Ward ( M.). - Prime divisors of second order recurrences, Duke math. J., t. 21, 1954, p. 607-614. Zbl0058.03701MR64073
  11. [11] Ward ( M.). - Prime divisors of Fibonacci numbers, Pacific J. Math., t. 11, 1961, p. 379-386. Zbl0112.26904MR138586
  12. [12] Wyler ( O.). - On second order recurrences, Amer. math. Monthly, t. 72, 1965, p. 500-506. Zbl0151.02503MR215806

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.