Sur le spectre de Lagrange d'un ensemble de nombres réels

Michel Mendès France

Séminaire Delange-Pisot-Poitou. Théorie des nombres (1977-1978)

  • Volume: 19, Issue: 2, page 1-5

How to cite

top

Mendès France, Michel. "Sur le spectre de Lagrange d'un ensemble de nombres réels." Séminaire Delange-Pisot-Poitou. Théorie des nombres 19.2 (1977-1978): 1-5. <http://eudml.org/doc/111016>.

@article{MendèsFrance1977-1978,
author = {Mendès France, Michel},
journal = {Séminaire Delange-Pisot-Poitou. Théorie des nombres},
keywords = {Lagrange Constant; Lagrange Spectrum; Quadratic Number Fields; Diophantine Approximation},
language = {fre},
number = {2},
pages = {1-5},
publisher = {Secrétariat mathématique},
title = {Sur le spectre de Lagrange d'un ensemble de nombres réels},
url = {http://eudml.org/doc/111016},
volume = {19},
year = {1977-1978},
}

TY - JOUR
AU - Mendès France, Michel
TI - Sur le spectre de Lagrange d'un ensemble de nombres réels
JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres
PY - 1977-1978
PB - Secrétariat mathématique
VL - 19
IS - 2
SP - 1
EP - 5
LA - fre
KW - Lagrange Constant; Lagrange Spectrum; Quadratic Number Fields; Diophantine Approximation
UR - http://eudml.org/doc/111016
ER -

References

top
  1. [1] Bumby ( R.T.). - The Markov spectrum, "Diophantine approximation and its applications", [1972. Whashington], p. 25-58. - New York, Academic Press, 1972. Zbl0262.10018MR387200
  2. [2] Bumby ( R.T.). - Structure of the Markoff spectrum below √12 , Acta Arithm., Warszawa, t. 29, 1976, p. 299-307. Zbl0283.10018
  3. [3] Cassels ( J.W.S.). - An introduction to Diophantine approximation, Cambridge, at the University Press, 1957 (Cambridge Tracts in Mathematics and mathematical Physics, 45). Zbl0077.04801MR87708
  4. [4] Cusick ( T.W.). - The largest gaps in the lower Markoff spectrum, Duke math. J., t. 41, 1974, p. 453-463. Zbl0301.10028MR466018
  5. [5] Cusick ( T.W.). - The connection between the Lagrange and Markoff spectra, Duke math. J., t. 42, 1975, p. 507-517. Zbl0347.10026MR374040
  6. [6] Cusick ( T.W.) et Mendès France ( M.). - The Lagrange spectrum of a set, Acta Arithm., Warszawa ( à paraître). Zbl0409.10020
  7. [7] Davenport ( H.). - A remark on continued fractions, Michigan math. J., t. 11, 1964, p. 343-344. Zbl0125.02802MR168526
  8. [8] Galois ( E.). - Démonstration d'un théorème sur les fractions continues périodiques, Annales Math. pures et appl., t. 19, 1828-1829, p. 294-299. Zbl61.0227.02
  9. [9] Kinney ( J.R.) and Pitcher ( T.S.). - The Hausdorff-Besicovich dimension of the level sets of Perron's modular function, Trans. Amer. math. Soc., t. 124, 1966, p. 122-130. Zbl0144.28701MR197398
  10. [10] Kinney ( J.R.) and Pitcher ( T.S.). - On the lower range of Perron's modular function, Canad. J. Math., t. 21, 1969, p. 808-816. Zbl0181.05402MR248089
  11. [11] Koksma ( J.F.). - Diophantische Approximationen. - Berlin, J. Springer, 1936 (Ergebnisse der Mathematik, 4, Band 4). Zbl0012.39602MR344200JFM62.0173.01
  12. [12] Hall ( M. Jr.). - The Markoff spectrum, Acta Arithm., Warszawa, t. 18, 1971, p. 387-399. Zbl0224.10023MR296023
  13. [13] Mendès France ( M.). - On a theorem of Davenport concerning continued fractions, Mathematika, London, t. 23, 1976, p. 136-141. Zbl0359.10005MR429772
  14. [14] Schmidt ( A.L.). - Diophantine approximation of complex numbers, Acta Math., Uppsala, t. 134, 1975, p. 1-85. Zbl0329.10023MR422168

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.