Résultats d’unicité pour le système de Navier-Stokes bidimensionnel

Isabelle Gallagher[1]

  • [1] Université de Paris 7, Institut de Mathématiques de Jussieu, Case 7012, 2 place Jussieu, 75251 Paris Cedex 05 France

Séminaire Équations aux dérivées partielles (2004-2005)

  • page 1-13

How to cite

top

Gallagher, Isabelle. "Résultats d’unicité pour le système de Navier-Stokes bidimensionnel." Séminaire Équations aux dérivées partielles (2004-2005): 1-13. <http://eudml.org/doc/11103>.

@article{Gallagher2004-2005,
affiliation = {Université de Paris 7, Institut de Mathématiques de Jussieu, Case 7012, 2 place Jussieu, 75251 Paris Cedex 05 France},
author = {Gallagher, Isabelle},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-13},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Résultats d’unicité pour le système de Navier-Stokes bidimensionnel},
url = {http://eudml.org/doc/11103},
year = {2004-2005},
}

TY - JOUR
AU - Gallagher, Isabelle
TI - Résultats d’unicité pour le système de Navier-Stokes bidimensionnel
JO - Séminaire Équations aux dérivées partielles
PY - 2004-2005
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 13
LA - fre
UR - http://eudml.org/doc/11103
ER -

References

top
  1. A. Alvino, P.-L. Lions, et G. Trombetti. Comparison results for elliptic and parabolic equations via symmetrization : a new approach. Differential Integral Equations4 (1991), 25–50. Zbl0735.35003MR1079609
  2. A. Alvino, P.-L. Lions, et G. Trombetti. On optimization problems with prescribed rearrangements. Nonlinear Anal. T.M.A.13 (1989), 185–220. Zbl0678.49003MR979040
  3. A. Arnold, P. Markowich, G. Toscani, et A. Unterreiter. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Partial Differential Equations26 (2001), 43–100. Zbl0982.35113MR1842428
  4. C. Bandle. Isoperimetric inequalities and applications. Monographs and Studies in Mathematics 7. Pitman, London, 1980. Zbl0436.35063MR572958
  5. M. Ben-Artzi. Global solutions of two-dimensional Navier-Stokes and Euler equations. Arch. Rational Mech. Anal.128 (1994), 329–358. Zbl0837.35110MR1308857
  6. M. Cannone et F. Planchon. Self-similar solutions for Navier-Stokes equations in 3 . Comm. Partial Differ. Equations21 (1996), 179–193. Zbl0842.35075MR1373769
  7. E. A. Carlen et M. Loss. Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the 2 -D Navier-Stokes equation. Duke Math. J.81 (1995), 135–157 (1996). Zbl0859.35011MR1381974
  8. G.-H. Cottet. Equations de Navier-Stokes dans le plan avec tourbillon initial mesure. C. R. Acad. Sci. Paris Sér. I Math.303 (1986), 105–108. Zbl0606.35065MR853597
  9. I. Gallagher et Th. Gallay. Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity. Math. Annalen332 (2005), 287–327. Zbl1096.35102MR2178064
  10. I. Gallagher, Th. Gallay et P.-L. Lions. On the uniqueness of the solution of the two-dimensional Navier-Stokes equation with a Dirac mass as initial vorticity. à paraître dans Math. Nachr. , disponible sur http://www.arXiv.org/math.AP/0410344. Zbl1083.35092MR2176270
  11. Th. Gallay et C. E. Wayne. Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on 2 . Arch. Rational Mech. Anal.163 (2002), 209–258. Zbl1042.37058MR1912106
  12. Th. Gallay et C. E. Wayne. Global stability of vortex solutions of the two-dimensional Navier-Stokes equation. Comm. Math. Phys.255 (2005), 97–129. Zbl1139.35084MR2123378
  13. Y. Giga, T. Miyakawa, et H. Osada. Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal.104 (1988), 223–250. Zbl0666.76052MR1017289
  14. T. Kato. The Navier-Stokes equation for an incompressible fluid in 2 with a measure as the initial vorticity. Differential Integral Equations7 (1994), 949–966. Zbl0826.35094MR1270113
  15. H. Koch et D. Tataru. Well-posedness for the Navier–Stokes equations. Advances in Mathematics157 (2001), 22–35. Zbl0972.35084MR1808843
  16. J. Leray. Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures. Appl.12 (1933), 1–82. Zbl0006.16702
  17. E. Lieb et M. Loss. Analysis. Graduate Studies in Mathematics 14. American Mathematical Society, Providence, RI, 1997. Zbl0873.26002MR1415616
  18. H. Osada. Diffusion processes with generators of generalized divergence form. J. Math. Kyoto Univ.27 (1987), 597–619. Zbl0657.35073MR916761

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.