Résultats d’unicité pour le système de Navier-Stokes bidimensionnel
- [1] Université de Paris 7, Institut de Mathématiques de Jussieu, Case 7012, 2 place Jussieu, 75251 Paris Cedex 05 France
Séminaire Équations aux dérivées partielles (2004-2005)
- page 1-13
Access Full Article
topHow to cite
topGallagher, Isabelle. "Résultats d’unicité pour le système de Navier-Stokes bidimensionnel." Séminaire Équations aux dérivées partielles (2004-2005): 1-13. <http://eudml.org/doc/11103>.
@article{Gallagher2004-2005,
affiliation = {Université de Paris 7, Institut de Mathématiques de Jussieu, Case 7012, 2 place Jussieu, 75251 Paris Cedex 05 France},
author = {Gallagher, Isabelle},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-13},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Résultats d’unicité pour le système de Navier-Stokes bidimensionnel},
url = {http://eudml.org/doc/11103},
year = {2004-2005},
}
TY - JOUR
AU - Gallagher, Isabelle
TI - Résultats d’unicité pour le système de Navier-Stokes bidimensionnel
JO - Séminaire Équations aux dérivées partielles
PY - 2004-2005
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 13
LA - fre
UR - http://eudml.org/doc/11103
ER -
References
top- A. Alvino, P.-L. Lions, et G. Trombetti. Comparison results for elliptic and parabolic equations via symmetrization : a new approach. Differential Integral Equations4 (1991), 25–50. Zbl0735.35003MR1079609
- A. Alvino, P.-L. Lions, et G. Trombetti. On optimization problems with prescribed rearrangements. Nonlinear Anal. T.M.A.13 (1989), 185–220. Zbl0678.49003MR979040
- A. Arnold, P. Markowich, G. Toscani, et A. Unterreiter. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Partial Differential Equations26 (2001), 43–100. Zbl0982.35113MR1842428
- C. Bandle. Isoperimetric inequalities and applications. Monographs and Studies in Mathematics 7. Pitman, London, 1980. Zbl0436.35063MR572958
- M. Ben-Artzi. Global solutions of two-dimensional Navier-Stokes and Euler equations. Arch. Rational Mech. Anal.128 (1994), 329–358. Zbl0837.35110MR1308857
- M. Cannone et F. Planchon. Self-similar solutions for Navier-Stokes equations in . Comm. Partial Differ. Equations21 (1996), 179–193. Zbl0842.35075MR1373769
- E. A. Carlen et M. Loss. Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the -D Navier-Stokes equation. Duke Math. J.81 (1995), 135–157 (1996). Zbl0859.35011MR1381974
- G.-H. Cottet. Equations de Navier-Stokes dans le plan avec tourbillon initial mesure. C. R. Acad. Sci. Paris Sér. I Math.303 (1986), 105–108. Zbl0606.35065MR853597
- I. Gallagher et Th. Gallay. Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity. Math. Annalen332 (2005), 287–327. Zbl1096.35102MR2178064
- I. Gallagher, Th. Gallay et P.-L. Lions. On the uniqueness of the solution of the two-dimensional Navier-Stokes equation with a Dirac mass as initial vorticity. à paraître dans Math. Nachr. , disponible sur http://www.arXiv.org/math.AP/0410344. Zbl1083.35092MR2176270
- Th. Gallay et C. E. Wayne. Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on . Arch. Rational Mech. Anal.163 (2002), 209–258. Zbl1042.37058MR1912106
- Th. Gallay et C. E. Wayne. Global stability of vortex solutions of the two-dimensional Navier-Stokes equation. Comm. Math. Phys.255 (2005), 97–129. Zbl1139.35084MR2123378
- Y. Giga, T. Miyakawa, et H. Osada. Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal.104 (1988), 223–250. Zbl0666.76052MR1017289
- T. Kato. The Navier-Stokes equation for an incompressible fluid in with a measure as the initial vorticity. Differential Integral Equations7 (1994), 949–966. Zbl0826.35094MR1270113
- H. Koch et D. Tataru. Well-posedness for the Navier–Stokes equations. Advances in Mathematics157 (2001), 22–35. Zbl0972.35084MR1808843
- J. Leray. Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures. Appl.12 (1933), 1–82. Zbl0006.16702
- E. Lieb et M. Loss. Analysis. Graduate Studies in Mathematics 14. American Mathematical Society, Providence, RI, 1997. Zbl0873.26002MR1415616
- H. Osada. Diffusion processes with generators of generalized divergence form. J. Math. Kyoto Univ.27 (1987), 597–619. Zbl0657.35073MR916761
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.