Renormalization of exponential sums and matrix cocycles

Alexander Fedotov[1]; Frédéric Klopp[2]

  • [1] Departement of Mathematical Physics, St Petersburg State University, 1, Ulianovskaja, 198904 St Petersburg-Petrodvorets, Russia
  • [2] LAGA, Institut Galilée, U.R.A 7539 C.N.R.S, Université de Paris-Nord, Avenue J.-B. Clément, F-93430 Villetaneuse, France

Séminaire Équations aux dérivées partielles (2004-2005)

  • Volume: 2004-2005, page 1-10

Abstract

top
In this paper, we present a new point of view on the renormalization of some exponential sums stemming from number theory. We generalize this renormalization procedure to study some matrix cocycles arising in spectral problems of quantum mechanics

How to cite

top

Fedotov, Alexander, and Klopp, Frédéric. "Renormalization of exponential sums and matrix cocycles." Séminaire Équations aux dérivées partielles 2004-2005 (2004-2005): 1-10. <http://eudml.org/doc/11105>.

@article{Fedotov2004-2005,
abstract = {In this paper, we present a new point of view on the renormalization of some exponential sums stemming from number theory. We generalize this renormalization procedure to study some matrix cocycles arising in spectral problems of quantum mechanics},
affiliation = {Departement of Mathematical Physics, St Petersburg State University, 1, Ulianovskaja, 198904 St Petersburg-Petrodvorets, Russia; LAGA, Institut Galilée, U.R.A 7539 C.N.R.S, Université de Paris-Nord, Avenue J.-B. Clément, F-93430 Villetaneuse, France},
author = {Fedotov, Alexander, Klopp, Frédéric},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {exponential sums; matrix cocycles; monodromy matrix},
language = {eng},
pages = {1-10},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Renormalization of exponential sums and matrix cocycles},
url = {http://eudml.org/doc/11105},
volume = {2004-2005},
year = {2004-2005},
}

TY - JOUR
AU - Fedotov, Alexander
AU - Klopp, Frédéric
TI - Renormalization of exponential sums and matrix cocycles
JO - Séminaire Équations aux dérivées partielles
PY - 2004-2005
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2004-2005
SP - 1
EP - 10
AB - In this paper, we present a new point of view on the renormalization of some exponential sums stemming from number theory. We generalize this renormalization procedure to study some matrix cocycles arising in spectral problems of quantum mechanics
LA - eng
KW - exponential sums; matrix cocycles; monodromy matrix
UR - http://eudml.org/doc/11105
ER -

References

top
  1. M. V. Berry and J. Goldberg. Renormalisation of curlicues. Nonlinearity, 1(1):1–26, 1988. Zbl0662.10029MR928946
  2. V. Buslaev and A. Fedotov. On the difference equations with periodic coefficients. Adv. Theor. Math. Phys., 5(6):1105–1168, 2001. Zbl1012.39008MR1926666
  3. V. S. Buslaev. Kronig-Penney electron in a homogeneous electric field. In Differential operators and spectral theory, volume 189 of Amer. Math. Soc. Transl. Ser. 2, pages 45–57. Amer. Math. Soc., Providence, RI, 1999. Zbl0935.34072MR1730502
  4. V. S. Buslaev and A. A. Fedotov. Bloch solutions for difference equations. Algebra i Analiz, 7(4):74–122, 1995. Zbl0847.39002MR1356532
  5. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ. Ergodic theory, volume 245 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ. Zbl0493.28007MR832433
  6. E. A. Coutsias and N. D. Kazarinoff. The approximate functional formula for the theta function and Diophantine Gauss sums. Trans. Amer. Math. Soc., 350(2):615–641, 1998. Zbl0915.11043MR1443869
  7. J.-M. Deshouillers. Geometric aspect of Weyl sums. In Elementary and analytic theory of numbers (Warsaw, 1982), volume 17 of Banach Center Publ., pages 75–82. PWN, Warsaw, 1985. Zbl0616.10031MR840473
  8. R. Evans, M. Minei, and B. Yee. Incomplete higher-order Gauss sums. J. Math. Anal. Appl., 281(2):454–476, 2003. Zbl1028.11047MR1982666
  9. M. V. Fedoryuk. Asymptotic analysis. Springer-Verlag, Berlin, 1993. Linear ordinary differential equations, Translated from the Russian by Andrew Rodick. Zbl0782.34001MR1295032
  10. A. Fedotov and F. Klopp. The multifractal structure of the generalized eigenfunctions and the spectral measure for an ergodic family of Schrödinger operators. In preparation. 
  11. A. Fedotov and F. Klopp. Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case. Comm. Math. Phys., 227(1):1–92, 2002. Zbl1004.81008MR1903839
  12. G. H. Hardy and J. E. Littlewood. Some problems of Diophantine approximation. Acta Math., 37:193–238, 1914. MR1555099
  13. M. Mendès France. The Planck constant of a curve. In Fractal geometry and analysis (Montreal, PQ, 1989), volume 346 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 325–366. Kluwer Acad. Publ., Dordrecht, 1991. Zbl0746.28005MR1140726
  14. L.J. Mordell. The approximate functional formula for the theta function. J. London Mat. Soc., 1:68–72, 1926. Zbl52.0376.02
  15. J.G. van der Corput. Über Summen die mit den Elliptischen θ -Funktionen zusammenhägen I. Math. Ann., 87:66–77, 1922. Zbl48.1174.01MR1512100
  16. J.G. van der Corput. Über Summen die mit den Elliptischen θ -Funktionen zusammenhägen II. Math. Ann., 90:1–18, 1923. Zbl49.0266.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.