Decay of a linear scalar field on Schwarzschild space-time
- [1] Department of Mathematics, Princeton University, Princeton, NJ
Séminaire Équations aux dérivées partielles (2005-2006)
- page 1-13
Access Full Article
topHow to cite
topRodnianski, Igor. "Decay of a linear scalar field on Schwarzschild space-time." Séminaire Équations aux dérivées partielles (2005-2006): 1-13. <http://eudml.org/doc/11123>.
@article{Rodnianski2005-2006,
affiliation = {Department of Mathematics, Princeton University, Princeton, NJ},
author = {Rodnianski, Igor},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-13},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Decay of a linear scalar field on Schwarzschild space-time},
url = {http://eudml.org/doc/11123},
year = {2005-2006},
}
TY - JOUR
AU - Rodnianski, Igor
TI - Decay of a linear scalar field on Schwarzschild space-time
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 13
LA - eng
UR - http://eudml.org/doc/11123
ER -
References
top- P. Blue and J. Sterbenz Uniform decay of local energy and the semi-linear wave equation on Schwarzchild space, preprint MR2259204
- D. Christodoulou The instability of naked singularities in the gravitational collapse of a scalar field, Ann. Math. 140 (1999), 183–217 Zbl1126.83305MR1680551
- D. Christodoulou and S. Klainerman The global nonlinear stability of the Minkowski space Princeton University Press, 1993 Zbl0827.53055MR1316662
- M. Dafermos The interior of charged black holes and the problem of uniqueness in general relativity Comm. Pure Appl. Math. 58 (2005), 0445–0504 Zbl1071.83037MR2119866
- M. Dafermos and I. Rodnianski A proof of Price’s law for the collapse of a self-gravitating scalar field Invent. Math. 162 (2005), 381–457 Zbl1088.83008
- M. Dafermos and I. Rodnianski The red-shift effect and radiation decay on black hole spacetimes, submitted
- J. Dimock Scattering for the wave equation on the Schwarzschild Metric, Gen. Rel. Grav. 17 (1985), 353–369 Zbl0618.35088MR788801
- C. Gundlach, R. H. Price, and J. Pullin Late-time behavior of stellar collapse and explosions. I. Linearized perturbations Phys. Rev. D 49 (1994), 883–889
- B. Kay and R. Wald Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation -sphere Classical Quantum Gravity 4 (1987), no. 4, 893–898 Zbl0647.53065MR895907
- H. Lindblad and I. Rodnianski The global stability of the Minkowski space-time in harmonic gauge, to appear in Ann. Math.
- S. Klainerman Uniform decay estimates and the Lorentz invariance of the classical wave equations Comm. Pure Appl. Math. 38 (1985), 321-332 Zbl0635.35059MR784477
- M. Machedon and J. Stalker Decay of solutions to the wave equation on a spherically symmetric background, preprint
- C. Morawetz Notes on the decay and scattering for some hyperbolic problems CBMS-NSF Regional Conference Series in Applied Mathematics 19, 1975 Zbl0303.35002MR492919
- E. Poisson and W. Israel Inner-horizon instability and mass inflation in black holes, Phys. Rev. Lett. 63 (1989), 1663–1666 MR1018317
- R. Price Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations Phys. Rev. D (3) 5 (1972), 2419-2438 MR376103
- F. Finster, N. Kamran, J. Smoller, S. T. Yau Decay of solutions of the wave equation in Kerr geometry, preprint Zbl1194.83014MR2215614
- A. Sá Barreto and M. Zworski Distribution of resonances for spherical black holes, Math. Res. Lett. 4 (1997), 103–121 Zbl0883.35120MR1432814
- F. Twainy The Time Decay of Solutions to the Scalar Wave Equation in Schwarzschild Background, Thesis, University of California, San Diego, 1989
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.