Some recent quantitative unique continuation theorems
- [1] Department of Mathematics University of Chicago Chicago, IL 60637 USA
Séminaire Équations aux dérivées partielles (2005-2006)
- page 1-10
Access Full Article
topHow to cite
topKenig, Carlos E.. "Some recent quantitative unique continuation theorems." Séminaire Équations aux dérivées partielles (2005-2006): 1-10. <http://eudml.org/doc/11133>.
@article{Kenig2005-2006,
affiliation = {Department of Mathematics University of Chicago Chicago, IL 60637 USA},
author = {Kenig, Carlos E.},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-10},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Some recent quantitative unique continuation theorems},
url = {http://eudml.org/doc/11133},
year = {2005-2006},
}
TY - JOUR
AU - Kenig, Carlos E.
TI - Some recent quantitative unique continuation theorems
JO - Séminaire Équations aux dérivées partielles
PY - 2005-2006
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 10
LA - eng
UR - http://eudml.org/doc/11133
ER -
References
top- P. Anderson, Absence of diffusion in certain random lattices, Phys. Review 109 (1958) 1492–1505.
- B. Bollobas, Combinatorics, Cambridge U.P., 1986 MR866142
- J. Bourgain, On localization for lattice Schrödinger operators involving Bernoulli variables, Lect. Notes Math., 1850 77–100, Springer Verlag, 2004. Zbl1083.35073MR2087153
- J. Bourgain and C. Kenig, On localization in the Anderson-Bernoulli model in higher dimensions, Invent. Math. 161 (2005) 389–426. Zbl1084.82005MR2180453
- T. Carleman, Sur un problème d’unicitè pour les systemes d’equations aux derivées portielles à deux variables indépendentes, Ark. for. Mat. 26B (1939) 1–9. Zbl0022.34201
- R. Carmona, A. Klein and F. Martinelli, Anderson localization for Bernoulli and other singular potentials, Comm. Math. Phys. 108 (1987) 41–66. Zbl0615.60098MR872140
- H. Donnelly and C. Fefferman, Nodol sets of eigenfunctions on Riemannian manifolds, Inv. Math. 93 (1988) 161–183. Zbl0659.58047MR943927
- L. Escauriaza, F. J. Fernández and S. Vessella, Doubling Properties of coloric functions, to appear in Applicable Analysis. Zbl1090.35050
- L. Escauriaza, C. Kenig, G. Ponce and L. Vega, Decay at infinity of caloric functions within characteristic hyperplanes, preprint. Zbl1116.35018
- L. Escauriaza, C. Kenig, G. Ponce and L. Vega, On unique continuation of solutions of Schrödinger equations, preprint. Zbl1124.35068
- L. Escauriaza, G. Seregin and V. Šverák, Backward uniqueness for parabolic equations, Arch. Rat. Mech. and Anal. 169 (2003) 147–157. Zbl1039.35052MR2005639
- L. Escauriaza, G. Seregin and V. Šverák, Backward uniqueness for the least operator in half-space, St. Petersburg Math. J. 15 (2004) 139–148. Zbl1053.35052MR1979722
- L. Escauriaza, G. Seregin and V. Šverák, solutions to the Navier-Stokes equations and backward uniqueness, Russ. Math. Surv. 58:2 (2003) 211–250. Zbl1064.35134MR1992563
- J. Fröhlich, F. Martinelli, E. Scoppola and T. Spencer, Constructive proof of localization in the Anderson tight binding model, Comm. Math. Phys. 101 (1985) 21–46. Zbl0573.60096MR814541
- J. Fröhlich and T. Spencer, Absence of diffusion with Anderson tight binding model for large disorder or low energy, Comm. Math. Phys. 88 (1983) 151–184. Zbl0519.60066MR696803
- Y. Gol’dsheid, S. Molchanov and L. Pastur, Pure point spectrum of stochastic one dimensional Schrödinger operators, Funct. Anal. Appl. 11 (1977) 1–10. Zbl0368.34015
- L. Hörmander, Uniqueness theorems for second order elliptic differential equations, Comm. PDE 8 (1983) 21–64. Zbl0546.35023MR686819
- A. Ionescu and C. Kenig, Carleman inequalities and uniqueness of solutions of nonlinear Schrödinger equations, Acta Math. 193 (2004) 193–239. Zbl1209.35128MR2134866
- A. Ionescu and C. Kenig, Uniqueness properties of solutions of Schrödinger equations, to appear, J. of Funct. Anal. Zbl1092.35104MR2200168
- V. Isakov, Carleman type estimates in anisotrophic case and applications, J. Diff. Eqs 105 (1993) 217–238. Zbl0851.35028MR1240395
- C. Kenig, G. Ponce and L. Vega, On unique continuation for the nonlinear Schrödinger equations, CPAM 60 (2002) 1247-1262. Zbl1041.35072MR1980854
- V. A. Kondratiev and E. M. Landis, Quantitative theory of linear partial differential equations of second order, Encyclopedia of Math. Sci. 32 (Partial Differential Equations III), Springer-Verlag, Berlin 1988. Zbl0738.35006
- E. M. Landis and O. A. Oleinik, Generalized analyticity and some related properties of solutions of elliptic and parabolic equations, Russian Math. Surv. 29 (1974) 195–212. Zbl0305.35014MR402268
- V. Z. Meshkov, On the possible rate of decay at infinity of solutions of second order partial differential equations, Math. USSR Sbornik 72 (1992) 343–360. Zbl0782.35010MR1110071
- L. Pastur and A. Figotin, Spectra of random and almost periodic operators, Heidelberg, Springer-Verlag 1992. Zbl0752.47002MR1223779
- C. Shubin, R. Vakilian and T. Wolff, Some harmonic analysis questions suggested by Anderson-Bernoulli models, GAFA 8 (1988) 932–964. Zbl0920.42005MR1650106
- E. M. Stein and R. Shakordin, Complex Analysis, Princeton Lectures in Analysis, Princeton University Press 2003. Zbl1020.30001MR1976398
- F. Wegner, Bounds on the density of states in disordered systems, Z. Phys. B 44 (1981) 9–15. MR639135
- B. Y. Zhang, Unique continuation for the nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 191–205. Zbl0879.35143MR1433092
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.