Anneaux quasi-frobéniusiens

Jacques Grappy

Séminaire Dubreil. Algèbre et théorie des nombres (1967-1968)

  • Volume: 21, Issue: 2, page 1-11

How to cite

top

Grappy, Jacques. "Anneaux quasi-frobéniusiens." Séminaire Dubreil. Algèbre et théorie des nombres 21.2 (1967-1968): 1-11. <http://eudml.org/doc/111358>.

@article{Grappy1967-1968,
author = {Grappy, Jacques},
journal = {Séminaire Dubreil. Algèbre et théorie des nombres},
keywords = {associative rings},
language = {fre},
number = {2},
pages = {1-11},
publisher = {Secrétariat mathématique},
title = {Anneaux quasi-frobéniusiens},
url = {http://eudml.org/doc/111358},
volume = {21},
year = {1967-1968},
}

TY - JOUR
AU - Grappy, Jacques
TI - Anneaux quasi-frobéniusiens
JO - Séminaire Dubreil. Algèbre et théorie des nombres
PY - 1967-1968
PB - Secrétariat mathématique
VL - 21
IS - 2
SP - 1
EP - 11
LA - fre
KW - associative rings
UR - http://eudml.org/doc/111358
ER -

References

top
  1. [1] Chase ( Stephen U.). - Direct products of modules, Trans. Amer. math. Soc., t. 97, 1960, p. 457-473. Zbl0100.26602MR120260
  2. [2] Curtis ( Charles W.) and Reiner ( Irving). - Representation theory of finite groups and associative algebras. - New York, Interscience Publishers, 1962 (Pure and applied Mathematics, 11). Zbl0131.25601MR144979
  3. [3] Dieudonné ( Jean). - Remarks on quasi-frobenius rings, Illinois J. of Math., t. 2, 1958, p. 346-354. Zbl0101.02701MR97427
  4. [4] Eilenberg ( Samuel) and Nakayama ( Tadasi). - On the dimension of modules and algebras, II, Nagoya math. J., t. 9, 1955, p. 1-16. Zbl0068.26503MR73577
  5. [5] Faith ( Carl). - Rings with ascending condition on annihilators, Nagoya math. J., t. 27, 1966, p. 179-191. Zbl0154.03001MR193107
  6. [6] Faith ( Carl) and Walker ( Elbert A.). - Direct-sum of injective modules, J. of algebra, t. 5, 1967, p. 203-221. Zbl0173.03203MR207760
  7. [7] Goldie ( A.W.). - Semi-prime rings with maximum condition, Proc. London math. Soc., Series 3, t. 10, 1960, p. 201-220. Zbl0091.03304MR111766
  8. [8] Ikeda ( Masatosi). - A characterization of quasi-frobenius rings, Osaka math. J., t. 4, 1952, p. 203-209. Zbl0048.02501MR53085
  9. [9] Ikeda ( Masatosi) and Nakayama ( Tadasi). - On some characteristic properties of quasi-frobenius and regular rings, Proc. Amer. math. Soc., t. 5, 1954, p. 15-19. Zbl0055.02602MR60489
  10. [10] Kaplansky ( I.) and Cohen ( I.S.). - Rings for which every module is a direct sum of cyclic modules, Math. Z., t. 54, 1951, p. 97-101. Zbl0043.26702MR43073
  11. [11] Matlis ( Eben). - Injective modules over noetherian rings, Pacific J. of Math., t. 8, 1958, p. 511-528. Zbl0084.26601MR99360
  12. [12] Morita ( Kiiti). - Duality for modules and its applications to the theory of rings with minimum conditions, Sc. Rep. Tokyo Kyoiku Daigaku, Section A, t. 6, 1958, p. 83-142. Zbl0080.25702MR96700
  13. [13] Morita ( Kiiti) and Tachikawa ( Kiroyuki). - Character modules, submodules of a free module, and quasi-frobenius rings, Math. Z., t. 65, 1956, p. 414-428. Zbl0075.24301MR95198
  14. [14] Nakayama ( Tadasi). - On frobeniusean algebras, Ann. of Math., 2nd series, t. 40, 1939, p. 611-633 ; t. 42, 1941, p. 1-21. Zbl0021.29402
  15. [15] Papp ( Zoltan). - On algebraically closed modules, Publ. Math., Debrecen, t. 6, 1959, p. 311-327. Zbl0090.02405MR121390
  16. [16] Rosenberg ( Alex) and Zelinsky ( Daniel). - Annihilators, Portug. Math., t. 20, 1961, p. 53-65. Zbl0123.03103MR131446

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.