Transport de masse optimal et géométrie sous-riemannienne : le cas du groupe de Heisenberg

Séverine Rigot

Séminaire Équations aux dérivées partielles (2006-2007)

  • page 1-14

Abstract

top
On expose ici une solution au problème du transport optimal de mesure dans le groupe de Heisenberg dans le cas où la fonction de coût est le carré de la distance sous-riemannienne, dite de Carnot-Carathéodory. On explique également comment le transport optimal peut être obtenu comme limite des transports optimaux relatifs à des approximations riemanniennes naturelles du groupe de Heisenberg.

How to cite

top

Rigot, Séverine. "Transport de masse optimal et géométrie sous-riemannienne : le cas du groupe de Heisenberg." Séminaire Équations aux dérivées partielles (2006-2007): 1-14. <http://eudml.org/doc/11154>.

@article{Rigot2006-2007,
abstract = {On expose ici une solution au problème du transport optimal de mesure dans le groupe de Heisenberg dans le cas où la fonction de coût est le carré de la distance sous-riemannienne, dite de Carnot-Carathéodory. On explique également comment le transport optimal peut être obtenu comme limite des transports optimaux relatifs à des approximations riemanniennes naturelles du groupe de Heisenberg.},
author = {Rigot, Séverine},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Transport de masse optimal et géométrie sous-riemannienne : le cas du groupe de Heisenberg},
url = {http://eudml.org/doc/11154},
year = {2006-2007},
}

TY - JOUR
AU - Rigot, Séverine
TI - Transport de masse optimal et géométrie sous-riemannienne : le cas du groupe de Heisenberg
JO - Séminaire Équations aux dérivées partielles
PY - 2006-2007
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 14
AB - On expose ici une solution au problème du transport optimal de mesure dans le groupe de Heisenberg dans le cas où la fonction de coût est le carré de la distance sous-riemannienne, dite de Carnot-Carathéodory. On explique également comment le transport optimal peut être obtenu comme limite des transports optimaux relatifs à des approximations riemanniennes naturelles du groupe de Heisenberg.
LA - fre
UR - http://eudml.org/doc/11154
ER -

References

top
  1. L. Ambrosio, Lecture notes on optimal transport problems, Mathematical aspects of evolving interfaces (Funchal, 2000), Lecture Notes in Math., vol. 1812, Springer, Berlin, 2003, pp. 1–52. Zbl1047.35001MR2011032
  2. L. Ambrosio and A. Pratelli, Existence and stability results in the L 1 theory of optimal transportation, Optimal transportation and applications (Martina Franca, 2001), Lecture Notes in Math., vol. 1813, Springer, Berlin, 2003, pp. 123-160. Zbl1065.49026MR2006307
  3. L. Ambrosio and S. Rigot, Optimal mass transportation in the Heisenberg group, J. Funct. Anal. 208 (2004), no. 2, 261-301. Zbl1076.49023MR2035027
  4. A. Bellaïche, The tangent space in sub-Riemannian geometry, in Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, 1–78. Zbl0862.53031MR1421822
  5. Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C.R. Acad. Sci. Paris, Sér I Math., 305 (1987), 805–808. Zbl0652.26017MR923203
  6. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 (1991), 375–417. Zbl0738.46011MR1100809
  7. L.C. Evans, Partial Differential Equations and Monge–Kantorovich Mass Transfer, Current Developments in Mathematics, 1997, 65–126. Zbl0954.35011MR1698853
  8. W. Gangbo, An elementary proof of the polar factorization theorem for functions, Arch. Rat. Mech. Anal., 128 (1994), 381–399. Zbl0828.57021MR1308860
  9. W. Gangbo and R.J. McCann, The geometry of optimal transportation, Acta Math., 177 (1996), 113–161. Zbl0887.49017MR1440931
  10. B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), no. 1-2, 95–153. Zbl0366.22010MR461589
  11. M. Gromov, Structures métriques pour les variétés riemaniennes, CEDIC, Paris, 1981 Zbl0509.53034MR682063
  12. M. Gromov, Carnot-Carathéodory spaces seen from within, in Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996,79–323. Zbl0864.53025MR1421823
  13. D. Jerison and A. Sanchez Calle, Subelliptic, second order differential operators, in Complex analysis, III (College Park, Md., 1985–86), 46–77, Lecture Notes in Math., 1277, Springer, Berlin, 1987. Zbl0634.35017MR922334
  14. R.J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., 11 (2001), 589–608. Zbl1011.58009MR1844080
  15. R. Monti, Some properties of Carnot-Carathéodory balls in the Heisenberg group, Rend. Mat. Acc. Lincei 11 (2000), 155–167. Zbl1197.53064MR1841689
  16. P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60. Zbl0678.53042MR979599
  17. S.T. Rachev and L. Rüschendorf, Mass transportation problems, Vol I : Theory, Vol. II : Applications. Probability and its applications, Springer, 1998. Zbl0990.60500MR1619170
  18. S. Rigot, Mass transportation in groups of type H , preprint. Zbl1089.49041MR2166663
  19. C. Villani, Topics in mass transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003. Zbl1106.90001MR1964483

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.