Transport de masse optimal et géométrie sous-riemannienne : le cas du groupe de Heisenberg
Séminaire Équations aux dérivées partielles (2006-2007)
- page 1-14
Access Full Article
topAbstract
topHow to cite
topRigot, Séverine. "Transport de masse optimal et géométrie sous-riemannienne : le cas du groupe de Heisenberg." Séminaire Équations aux dérivées partielles (2006-2007): 1-14. <http://eudml.org/doc/11154>.
@article{Rigot2006-2007,
abstract = {On expose ici une solution au problème du transport optimal de mesure dans le groupe de Heisenberg dans le cas où la fonction de coût est le carré de la distance sous-riemannienne, dite de Carnot-Carathéodory. On explique également comment le transport optimal peut être obtenu comme limite des transports optimaux relatifs à des approximations riemanniennes naturelles du groupe de Heisenberg.},
author = {Rigot, Séverine},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-14},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Transport de masse optimal et géométrie sous-riemannienne : le cas du groupe de Heisenberg},
url = {http://eudml.org/doc/11154},
year = {2006-2007},
}
TY - JOUR
AU - Rigot, Séverine
TI - Transport de masse optimal et géométrie sous-riemannienne : le cas du groupe de Heisenberg
JO - Séminaire Équations aux dérivées partielles
PY - 2006-2007
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 14
AB - On expose ici une solution au problème du transport optimal de mesure dans le groupe de Heisenberg dans le cas où la fonction de coût est le carré de la distance sous-riemannienne, dite de Carnot-Carathéodory. On explique également comment le transport optimal peut être obtenu comme limite des transports optimaux relatifs à des approximations riemanniennes naturelles du groupe de Heisenberg.
LA - fre
UR - http://eudml.org/doc/11154
ER -
References
top- L. Ambrosio, Lecture notes on optimal transport problems, Mathematical aspects of evolving interfaces (Funchal, 2000), Lecture Notes in Math., vol. 1812, Springer, Berlin, 2003, pp. 1–52. Zbl1047.35001MR2011032
- L. Ambrosio and A. Pratelli, Existence and stability results in the theory of optimal transportation, Optimal transportation and applications (Martina Franca, 2001), Lecture Notes in Math., vol. 1813, Springer, Berlin, 2003, pp. 123-160. Zbl1065.49026MR2006307
- L. Ambrosio and S. Rigot, Optimal mass transportation in the Heisenberg group, J. Funct. Anal. 208 (2004), no. 2, 261-301. Zbl1076.49023MR2035027
- A. Bellaïche, The tangent space in sub-Riemannian geometry, in Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, 1–78. Zbl0862.53031MR1421822
- Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C.R. Acad. Sci. Paris, Sér I Math., 305 (1987), 805–808. Zbl0652.26017MR923203
- Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 (1991), 375–417. Zbl0738.46011MR1100809
- L.C. Evans, Partial Differential Equations and Monge–Kantorovich Mass Transfer, Current Developments in Mathematics, 1997, 65–126. Zbl0954.35011MR1698853
- W. Gangbo, An elementary proof of the polar factorization theorem for functions, Arch. Rat. Mech. Anal., 128 (1994), 381–399. Zbl0828.57021MR1308860
- W. Gangbo and R.J. McCann, The geometry of optimal transportation, Acta Math., 177 (1996), 113–161. Zbl0887.49017MR1440931
- B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), no. 1-2, 95–153. Zbl0366.22010MR461589
- M. Gromov, Structures métriques pour les variétés riemaniennes, CEDIC, Paris, 1981 Zbl0509.53034MR682063
- M. Gromov, Carnot-Carathéodory spaces seen from within, in Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996,79–323. Zbl0864.53025MR1421823
- D. Jerison and A. Sanchez Calle, Subelliptic, second order differential operators, in Complex analysis, III (College Park, Md., 1985–86), 46–77, Lecture Notes in Math., 1277, Springer, Berlin, 1987. Zbl0634.35017MR922334
- R.J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., 11 (2001), 589–608. Zbl1011.58009MR1844080
- R. Monti, Some properties of Carnot-Carathéodory balls in the Heisenberg group, Rend. Mat. Acc. Lincei 11 (2000), 155–167. Zbl1197.53064MR1841689
- P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1–60. Zbl0678.53042MR979599
- S.T. Rachev and L. Rüschendorf, Mass transportation problems, Vol I : Theory, Vol. II : Applications. Probability and its applications, Springer, 1998. Zbl0990.60500MR1619170
- S. Rigot, Mass transportation in groups of type , preprint. Zbl1089.49041MR2166663
- C. Villani, Topics in mass transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003. Zbl1106.90001MR1964483
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.