Local Smoothness of Weak Solutions to the Magnetohydrodynamics Equations via Blowup Methods

Basil Nicolaenko; Alex Mahalov; Timofey Shilkin

Séminaire Équations aux dérivées partielles (2006-2007)

  • Volume: 2006-2007, page 1-19

Abstract

top
We demonstrate that there exist no self-similar solutions of the incompressible magnetohydrodynamics (MHD) equations in the space L 3 ( R 3 ) . This is a consequence of proving the local smoothness of weak solutions via blowup methods for weak solutions which are locally L 3 . We present the extension of the Escauriaza-Seregin-Sverak method to MHD systems.

How to cite

top

Nicolaenko, Basil, Mahalov, Alex, and Shilkin, Timofey. "Local Smoothness of Weak Solutions to the Magnetohydrodynamics Equations via Blowup Methods." Séminaire Équations aux dérivées partielles 2006-2007 (2006-2007): 1-19. <http://eudml.org/doc/11157>.

@article{Nicolaenko2006-2007,
abstract = {We demonstrate that there exist no self-similar solutions of the incompressible magnetohydrodynamics (MHD) equations in the space $L^3 (\mathbf\{R\}^3)$. This is a consequence of proving the local smoothness of weak solutions via blowup methods for weak solutions which are locally $L^3$. We present the extension of the Escauriaza-Seregin-Sverak method to MHD systems.},
author = {Nicolaenko, Basil, Mahalov, Alex, Shilkin, Timofey},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {bowup methods; self-similarity},
language = {eng},
pages = {1-19},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Local Smoothness of Weak Solutions to the Magnetohydrodynamics Equations via Blowup Methods},
url = {http://eudml.org/doc/11157},
volume = {2006-2007},
year = {2006-2007},
}

TY - JOUR
AU - Nicolaenko, Basil
AU - Mahalov, Alex
AU - Shilkin, Timofey
TI - Local Smoothness of Weak Solutions to the Magnetohydrodynamics Equations via Blowup Methods
JO - Séminaire Équations aux dérivées partielles
PY - 2006-2007
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2006-2007
SP - 1
EP - 19
AB - We demonstrate that there exist no self-similar solutions of the incompressible magnetohydrodynamics (MHD) equations in the space $L^3 (\mathbf{R}^3)$. This is a consequence of proving the local smoothness of weak solutions via blowup methods for weak solutions which are locally $L^3$. We present the extension of the Escauriaza-Seregin-Sverak method to MHD systems.
LA - eng
KW - bowup methods; self-similarity
UR - http://eudml.org/doc/11157
ER -

References

top
  1. Caffarelli, Kohn, NirenbergL. Caffarelli, R.V. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), 771-831. Zbl0509.35067MR673830
  2. L. Escauriaza, G. Seregin, V. Šverak, L 3 , - solutions to the Navier-Stokes equations and backward uniqueness, Uspekhi Matematicheskih Nauk, 58 (2003) no. 2, pp. 3-44. Zbl1064.35134MR1992563
  3. L. Escauriaza, G. Seregin, V. Šverak, On backward uniqueness for parabolic equations, Arch. Rational Mech. Anal., 169 (2003) no. 2, pp. 147-157. Zbl1039.35052MR2005639
  4. O.A. Ladyzhenskaya, G.A. Seregin, On Partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, Journal of Mathematical Fluid Mechanics, 1 (1999), pp. 356-387. Zbl0954.35129MR1738171
  5. O.A. Ladyzhenskaya, V.A. Solonnikov, Mathematical problems of hydrodynamics and magnetohydrodynamics of a viscous incompressible fluid, Proceedings of V.A. Steklov Mathematical Institute, 59 (1960), pp. 115-173 (in Russian). MR170130
  6. J. Leray,Sur le mouvement d’un liquide visqueus emplissant l’espace, Acta Math. 63 (1934), pp. 193-248. 
  7. F.-H. Lin,A new proof of the Caffarell-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), no. 3, pp. 241-257. Zbl0958.35102MR1488514
  8. J. Necas, M. Růžička, V. Šverak, On Leray’s self-similar solutions of the Navier-Stokes equations, Acta Math. 176 (1996), pp. 283-294. Zbl0884.35115
  9. V. Scheffer,Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys. 55 (1977), pp. 97-112. Zbl0357.35071MR510154
  10. G. Seregin, Algebra and Analysis, in press. 
  11. G. Seregin, Handbook of Mathematical Hydrodynamics, in press. 
  12. V.A. Solonnikov, On the estimates of solutions of nonstationary Stokes problem in anisotropic S.L. Sobolev spaces and on the estimate of resolvent of the Stokes problem, Uspekhi Matematicheskih Nauk, 58 (2003) no.2 (350) pp. 123-156. Zbl1059.35101MR1992567
  13. Tai-Peng Tsai, On Leray’s self-similar solutions of the Navier-Stokes equations satisfying Local Energy Inequality, Arch. Rational Mech. Anal. 143 (1998), pp. 29-51. Zbl0916.35084
  14. Cheng He, Zhouping Xin,On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differential Equations 213 (2005), no. 2, pp. 235-254. Zbl1072.35154MR2142366

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.