Boundary regularity of solutions of the inhomogeneous Cauchy-Riemann equations

J. J. Kohn

Séminaire Équations aux dérivées partielles (Polytechnique) (1972-1973)

  • page 1-9

How to cite

top

Kohn, J. J.. "Boundary regularity of solutions of the inhomogeneous Cauchy-Riemann equations." Séminaire Équations aux dérivées partielles (Polytechnique) (1972-1973): 1-9. <http://eudml.org/doc/111590>.

@article{Kohn1972-1973,
author = {Kohn, J. J.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {eng},
pages = {1-9},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Boundary regularity of solutions of the inhomogeneous Cauchy-Riemann equations},
url = {http://eudml.org/doc/111590},
year = {1972-1973},
}

TY - JOUR
AU - Kohn, J. J.
TI - Boundary regularity of solutions of the inhomogeneous Cauchy-Riemann equations
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1972-1973
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 9
LA - eng
UR - http://eudml.org/doc/111590
ER -

References

top
  1. [1] Folland G.B. and Kohn J.J.: The Neumann problem for the Cauchy-Riemann complex. Annals of Math. Study, Vol. 75, Princeton Univ. Press (1972). Zbl0247.35093MR461588
  2. [2] Grauert H.: Bemerksverte pseudokonvexe mannifaltigkeiten, Math. Z.81 (1963), 377-391. Zbl0151.09702MR168798
  3. [3] Greiner P.: On subelliptic estimates for the ∂-Neumann problem in C2, J. Diff. Geom. (to appear). Zbl0284.35054
  4. [4] Hörmander L.: L2 estimates and existence theorems for the ∂ operator, Acta Math.113 (1965), 89-152. Zbl0158.11002
  5. [5] Hörmander L.: An introduction to complex analysis in several variables, Van Nostrand (1966). Zbl0138.06203MR203075
  6. [6] Kohn J.J.: Global regularity for ∂ on weakly pseudo-convex manifolds, Trans. A. M. S. (to appear). Zbl0276.35071
  7. [7] Kohn J.J.: Boundary behaviour of ∂ on weakly pseudo-convex manifolds of dimension 2, J. Diff. Geom.6 (1972), 523-542. Zbl0256.35060
  8. [8] Kohn J.J. and Nirenberg L.: Non-coercive boundary value problems, Comm. P. App. Math.18 (1965), 451-472. Zbl0125.33302MR181815
  9. [9] Kohn J.J. and Nirenberg L.: A pseudo-convex domain not admitting a holomorphic support function, Math. Annalen (to appear). Zbl0248.32013MR330513
  10. [10] Sweeney W.J.: Coerciveness in the Neumann problem, J. Diff. Geom.6 (1972), 375-393. Zbl0255.58008MR298708

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.