Rigorous results and conjectures on stationary space-periodic 2D turbulence
Séminaire Équations aux dérivées partielles (2006-2007)
- Volume: 2006-2007, page 1-16
Access Full Article
topAbstract
topHow to cite
topKuksin, Sergei B.. "Rigorous results and conjectures on stationary space-periodic 2D turbulence." Séminaire Équations aux dérivées partielles 2006-2007 (2006-2007): 1-16. <http://eudml.org/doc/11163>.
@article{Kuksin2006-2007,
abstract = {We discuss recent results on the inviscid limits for the randomly forced 2D Navier-Stokes equation under periodic boundary conditions, their relevance for the theory of stationary space periodic 2D turbulence and some related conjectures.},
author = {Kuksin, Sergei B.},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Navier-Stokes equation; periodic boundary conditions; turbulence; vorticity; Eulerian limit},
language = {eng},
pages = {1-16},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Rigorous results and conjectures on stationary space-periodic 2D turbulence},
url = {http://eudml.org/doc/11163},
volume = {2006-2007},
year = {2006-2007},
}
TY - JOUR
AU - Kuksin, Sergei B.
TI - Rigorous results and conjectures on stationary space-periodic 2D turbulence
JO - Séminaire Équations aux dérivées partielles
PY - 2006-2007
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2006-2007
SP - 1
EP - 16
AB - We discuss recent results on the inviscid limits for the randomly forced 2D Navier-Stokes equation under periodic boundary conditions, their relevance for the theory of stationary space periodic 2D turbulence and some related conjectures.
LA - eng
KW - Navier-Stokes equation; periodic boundary conditions; turbulence; vorticity; Eulerian limit
UR - http://eudml.org/doc/11163
ER -
References
top- V. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Springer-Verlag, Berlin, 2001. Zbl0902.76001MR1612569
- R. M. Dudley, Real Analysis and Probability, Cambridge University Press, Cambridge, 2002. Zbl1023.60001MR1932358
- M. Freidlin and A. Wentzell, Random Perturbations of Dynamical Systems, 2nd ed., Springer-Verlag, New York, 1998. Zbl0922.60006MR1652127
- M. Hairer and J. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Annals of Mathematics 164 (2006), no. 3. Zbl1130.37038MR2259251
- T. Kappeler and J. Pöschel, KAM & KdV, Springer, 2003.
- S. B. Kuksin and O. Penrose, A family of balance relations for the two-dimensional Navier–Stokes equations with random forcing, J. Stat. Physics 118 (2005), 437–449. Zbl1064.76027MR2123643
- S. B. Kuksin and A. L. Piatnitski, Khasminskii - Whitham averaging for randomly perturbed KdV equation, Preprint, see mparc 06-313 (2006). MR2225710
- N. V. Krylov, Controlled Diffusion Processes, Springer, 1980. Zbl0459.93002MR601776
- S. B. Kuksin and A. Shirikyan, Randomly forced CGL equation: stationary measures and the inviscid limit, J. Phys. A: Math. Gen. 37 (2004), 1–18. Zbl1047.35061MR2039838
- S. B. Kuksin, The Eulerian limit for 2D statistical hydrodynamics, J. Stat. Physics 115 (2004), 469–492. Zbl1157.76319MR2070104
- —, Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions, Europear Mathematical Society Publishing House, 2006, also see mp_arc 06-178. Zbl1099.35083MR2225710
- —, Remarks on the balance relations for the two-dimensional Navier–Stokes equation with random forcing, J. Stat. Physics 122 (2006), 101–114. Zbl1089.76013MR2203784
- —, Eulerian limit for 2D Navier-Stokes equation and damped/driven KdV equation as its model, preprint, see mparc 07-25 (2007).
- —, On distribution of energy and vorticity for solutions of 2D Navier-Stokes equations with small viscosity, preprint, see mparc 07-60 (2007).
- H. McKean and E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branching points, Comm. Pure Appl. Math. 29 (1976), 143–226. Zbl0339.34024
- K. R. Parthasarathy, Introduction to Probability and Measure, Macmillan, 1977. Zbl0395.28001MR651012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.