Rigorous results and conjectures on stationary space-periodic 2D turbulence

Sergei B. Kuksin

Séminaire Équations aux dérivées partielles (2006-2007)

  • Volume: 2006-2007, page 1-16

Abstract

top
We discuss recent results on the inviscid limits for the randomly forced 2D Navier-Stokes equation under periodic boundary conditions, their relevance for the theory of stationary space periodic 2D turbulence and some related conjectures.

How to cite

top

Kuksin, Sergei B.. "Rigorous results and conjectures on stationary space-periodic 2D turbulence." Séminaire Équations aux dérivées partielles 2006-2007 (2006-2007): 1-16. <http://eudml.org/doc/11163>.

@article{Kuksin2006-2007,
abstract = {We discuss recent results on the inviscid limits for the randomly forced 2D Navier-Stokes equation under periodic boundary conditions, their relevance for the theory of stationary space periodic 2D turbulence and some related conjectures.},
author = {Kuksin, Sergei B.},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Navier-Stokes equation; periodic boundary conditions; turbulence; vorticity; Eulerian limit},
language = {eng},
pages = {1-16},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Rigorous results and conjectures on stationary space-periodic 2D turbulence},
url = {http://eudml.org/doc/11163},
volume = {2006-2007},
year = {2006-2007},
}

TY - JOUR
AU - Kuksin, Sergei B.
TI - Rigorous results and conjectures on stationary space-periodic 2D turbulence
JO - Séminaire Équations aux dérivées partielles
PY - 2006-2007
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2006-2007
SP - 1
EP - 16
AB - We discuss recent results on the inviscid limits for the randomly forced 2D Navier-Stokes equation under periodic boundary conditions, their relevance for the theory of stationary space periodic 2D turbulence and some related conjectures.
LA - eng
KW - Navier-Stokes equation; periodic boundary conditions; turbulence; vorticity; Eulerian limit
UR - http://eudml.org/doc/11163
ER -

References

top
  1. V. Arnold and B. Khesin, Topological Methods in Hydrodynamics, Springer-Verlag, Berlin, 2001. Zbl0902.76001MR1612569
  2. R. M. Dudley, Real Analysis and Probability, Cambridge University Press, Cambridge, 2002. Zbl1023.60001MR1932358
  3. M. Freidlin and A. Wentzell, Random Perturbations of Dynamical Systems, 2nd ed., Springer-Verlag, New York, 1998. Zbl0922.60006MR1652127
  4. M. Hairer and J. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Annals of Mathematics 164 (2006), no. 3. Zbl1130.37038MR2259251
  5. T. Kappeler and J. Pöschel, KAM & KdV, Springer, 2003. 
  6. S. B. Kuksin and O. Penrose, A family of balance relations for the two-dimensional Navier–Stokes equations with random forcing, J. Stat. Physics 118 (2005), 437–449. Zbl1064.76027MR2123643
  7. S. B. Kuksin and A. L. Piatnitski, Khasminskii - Whitham averaging for randomly perturbed KdV equation, Preprint, see mp _ arc 06-313 (2006). MR2225710
  8. N. V. Krylov, Controlled Diffusion Processes, Springer, 1980. Zbl0459.93002MR601776
  9. S. B. Kuksin and A. Shirikyan, Randomly forced CGL equation: stationary measures and the inviscid limit, J. Phys. A: Math. Gen. 37 (2004), 1–18. Zbl1047.35061MR2039838
  10. S. B. Kuksin, The Eulerian limit for 2D statistical hydrodynamics, J. Stat. Physics 115 (2004), 469–492. Zbl1157.76319MR2070104
  11. —, Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions, Europear Mathematical Society Publishing House, 2006, also see mp_arc 06-178. Zbl1099.35083MR2225710
  12. —, Remarks on the balance relations for the two-dimensional Navier–Stokes equation with random forcing, J. Stat. Physics 122 (2006), 101–114. Zbl1089.76013MR2203784
  13. —, Eulerian limit for 2D Navier-Stokes equation and damped/driven KdV equation as its model, preprint, see mp _ arc 07-25 (2007). 
  14. —, On distribution of energy and vorticity for solutions of 2D Navier-Stokes equations with small viscosity, preprint, see mp _ arc 07-60 (2007). 
  15. H. McKean and E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branching points, Comm. Pure Appl. Math. 29 (1976), 143–226. Zbl0339.34024
  16. K. R. Parthasarathy, Introduction to Probability and Measure, Macmillan, 1977. Zbl0395.28001MR651012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.