Sur les problèmes aux limites non-coercifs pour le laplacien

K. Taira

Séminaire Équations aux dérivées partielles (Polytechnique) (1976-1977)

  • page 1-14

How to cite

top

Taira, K.. "Sur les problèmes aux limites non-coercifs pour le laplacien." Séminaire Équations aux dérivées partielles (Polytechnique) (1976-1977): 1-14. <http://eudml.org/doc/111675>.

@article{Taira1976-1977,
author = {Taira, K.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-14},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Sur les problèmes aux limites non-coercifs pour le laplacien},
url = {http://eudml.org/doc/111675},
year = {1976-1977},
}

TY - JOUR
AU - Taira, K.
TI - Sur les problèmes aux limites non-coercifs pour le laplacien
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1976-1977
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 14
LA - fre
UR - http://eudml.org/doc/111675
ER -

References

top
  1. (1) S. Agmon: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math., 15 (1962), 119-147. Zbl0109.32701MR147774
  2. (2) S. Agmon: Lectures on elliptic boundary value problems. Van Nostrand Mathematical Studies, Princeton, 1965. Zbl0142.37401MR178246
  3. (3) M.S. Agranovič et M.I. Visik: Elliptic problems with a parameter and parabolic problems of general type. Russian Math. Surveys, 19 (1964), 53-157. Zbl0137.29602MR192188
  4. (4) G. Da Prato et U. Mosco: Regolarizzazione dei semigruppi distribuzioni analitici. Ann. Sc. Norm. Sup. Pisa, 19 (1965), 563-576. Zbl0198.47203MR203492
  5. (5) Ju. V. Egorov et V.A. Kondrat'ev: The oblique derivative problem. Math. USSR Sb., 7 (1969), 139-169. Zbl0186.43202MR237953
  6. (6) D. Fujiwara: On some homogeneous boundary value problems bounded below. J. Fac. Sci. Univ. Tokyo, Sec. IA 17 (1970), 123-152. Zbl0223.35034MR280865
  7. (7) G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator. Ann. Sc. Norm. Sup. Pisa, 22 (1968), 425-513. Zbl0182.14501MR239269
  8. (8) S.G. Kreĭn: Équations aux dérivées linéaires dans un espace de Panach. Moscou, 1967 (en russe). 
  9. (9) J.L. Lions et 5. Magenes: Problèmes aux limites non-homogènes et applications. Vol. 2, Paris, 1968. Zbl0165.10801
  10. (10) A. Melin: Lover bounds for pseudo-differential operators. Ark. för Mat., 9 (1971), 117-140. Zbl0211.17102MR328393
  11. (11) S. Mizohata: Théorie des équations aux dérivées partielles. Iwanami, Tokyo, 1965 (en japonais). 
  12. (12) K. Taira: On some degenerate oblique derivative problems. J. Fac. Sci. Univ. Tokyo, Sec. IA 23 (1976), 259-287. Zbl0359.35020MR435583
  13. (13) K. Taira: On some non-coercive boundary value problems for the Laplacian. J. Fac. Sci. Univ. Tokyo, Sec. IA 23 (1976), 343-367. Zbl0364.35015MR435584
  14. (14) K. Taira: On a degenerate oblique derivative problem of Egorov and Kondrat'ev. J. Fac. Sci. Univ. Tokyo, Sec. IA (1976), 383-391. Zbl0364.35016MR435585
  15. (15) K. Taira: On a degenerate oblique derivative problem with interior boundary conditions. Proc. Japan Acad., 52 (1976), 484-487. Zbl0371.35010MR454406
  16. (16) F. Treves: A new method of proof of the subelliptic estimates. Comm. Pure Appl. Math., 24 (1971), 71-115. Zbl0206.11401MR290201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.