Équations d'évolution du type hyperbolique non strict
Séminaire Équations aux dérivées partielles (Polytechnique) (1976-1977)
- page 1-8
Access Full Article
topHow to cite
topBeals, R.. "Équations d'évolution du type hyperbolique non strict." Séminaire Équations aux dérivées partielles (Polytechnique) (1976-1977): 1-8. <http://eudml.org/doc/111691>.
@article{Beals1976-1977,
author = {Beals, R.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-8},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Équations d'évolution du type hyperbolique non strict},
url = {http://eudml.org/doc/111691},
year = {1976-1977},
}
TY - JOUR
AU - Beals, R.
TI - Équations d'évolution du type hyperbolique non strict
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1976-1977
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 8
LA - fre
UR - http://eudml.org/doc/111691
ER -
References
top- [1] Beals, R., Semigroups and abstract Gevrey spaces, J. Functional Analysis10 (1972), 300-308. Zbl0236.47044MR361913
- [2] Beals, R., Hyperbolic equations and systems with multiple characteristics, Arch. Rational Mech. Anal.48 (1972), 123-152. Zbl0245.35054MR344695
- [3] Ivrii, V. Ja., Conditions for the correctness in Gevrey classes of the Cauchy problem for nonstrictly hyperbolic operators, Dokl. Akad. Nauk SSSR221 (1975), 775-777, Soviet Math. Dokl.16 (1975), 415-417. Zbl0318.35058MR397179
- [4] Ivrii, V. Ja., Conditions that the Cauchy problem for hyperbolic operators with characteristics of variable multiplicity be well posed, Dokl. Akad. Nauk SSSR221 (1975), 1253-1255: Soviet Math. Dokl.21 (1975), 501-503. Zbl0318.35059MR397180
- [5] Leray, J., et Ohya, V., Systèmes linéaires hyperboliques non stricts, Deuxième colloque l'Anal. Fonct. Centre Belge Rech. Math., Louvain1964. Zbl0135.14804MR190544
- [6] Ohya, V., Le problème de Cauchy pour les équations hyperboliques à caractéristiques multiples, J. Math. Soc. Japan16 (1964), 268-286. Zbl0143.13602MR179445
- [7] Steinberg, S., Existence and uniqueness of solutions of hyperbolic equations which are not necessarily strictly hyperbolic, J. Diff. Equations, Zbl0268.35059
- [8] Yosida, K., Functional Analysis, 2nd Ed., Springer Verlag, Berlin1968. Zbl0152.32102
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.