Bifurcations élémentaires et transition

G. Iooss

Séminaire Équations aux dérivées partielles (Polytechnique) (1979-1980)

  • page 1-24

How to cite

top

Iooss, G.. "Bifurcations élémentaires et transition." Séminaire Équations aux dérivées partielles (Polytechnique) (1979-1980): 1-24. <http://eudml.org/doc/111756>.

@article{Iooss1979-1980,
author = {Iooss, G.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {turbulence; Hopf bifurcation; quasi-periodicity; accrochage des frequences; symmetry breaking; normal form; persistence of cycles; Poincare map; weak resonance; invariant torus},
language = {fre},
pages = {1-24},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Bifurcations élémentaires et transition},
url = {http://eudml.org/doc/111756},
year = {1979-1980},
}

TY - JOUR
AU - Iooss, G.
TI - Bifurcations élémentaires et transition
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1979-1980
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 24
LA - fre
KW - turbulence; Hopf bifurcation; quasi-periodicity; accrochage des frequences; symmetry breaking; normal form; persistence of cycles; Poincare map; weak resonance; invariant torus
UR - http://eudml.org/doc/111756
ER -

References

top
  1. [1] V.I. Arnold: Loss of stability of self-oscollations close to resonance and versal deformations of equivariant vector fields. Funk. Anal. Ego. Priloz.11, 2, 1-10 (1977). Zbl0411.58013MR442987
  2. [2] P. Bergé et Y. Pomeau: La turbulence. La Recherche110, 422-432 (1980). 
  3. [3] A. Chenciner et G. Iooss: Bifurcations de tores invariants. Arch. Rat. Mech. Anal.69, 2, 109-198 (1979). Zbl0405.58033MR521266
  4. [4] A. Chenciner et G. Iooss: Persistance et bifurcation de tores invariants. Arch. Rat. Mech. Anal.71, 4, 301-306 (1979). Zbl0417.35013MR533284
  5. [5] J.P. Gollub and S.V. Benson: Phase locking in the oscillations leading to turbulence. Pattern formation, H. Haken ed. Springer1979. 
  6. [6] J.P. Gollub and S.V. Benson: Time dependent instabilities and the transition to turbulent convection. A paraître dans J. Fluid Mech. 
  7. [7] M. Gorman, L. Reith, H.L. Swinney: Transition to turbulence in the flow between concentric rotating cylinder. Proc. New York Acad. Sciences, Dec. 79 (à paraître) . 
  8. [8] G. Iooss: Bifurcation et stabilité, Pub. Math. d'Orsay n° 31, 1974. MR487634
  9. [9] G. Iooss: Sur la deuxième bifurcation d'une solution stationnaire de systèmes du type Navier-Stokes. Arch. Rat. Mech. Anal.64,4, 339-369 (1977). Zbl0356.35068MR650472
  10. [10] G. Iooss and D.D. Joseph: Bifurcation and stability of nT-periodic solutions branching from T-periodic solutions at points of resonance. Arch. Rat. Mech. Anal.66, 2, 135-172 (1977). Zbl0448.34044MR501154
  11. [11] G. Iooss and D.D. Joseph: The behavior of solutions lying on an invariant 2-torus arising from the bifurcation of a periodic solution. Bifurcation theory, Bielefeld, Oct. 79, Pitman research notes (à paraître). Zbl0512.58026MR659692
  12. [12] G. Iooss and W.F. Langford: On the interactions of two Hopf bifurcations (en préparation). Zbl0437.34036
  13. [13] R. Jost and E. Zehnder: A generalization of the Hopf bifurcation theorem. Helvetica Physica Acta, 45, 258-276 (1972). 
  14. [14] W.F. Langford and G. Iooss: Interactions of Hopf and pitchfork bifurcations. Workshop on bifurcation problems. Mittelmann Ed. Birkhäuser-Lecture Notes1980 (à paraître).. Zbl0437.34036MR591900
  15. [15] A. Libchaber et J. Maurer: Une expérience de Rayleigh-Bénard de géométrie réduite; multiplication, accrochage et démultiplication de fréquences. J. de Physique, C3, suppl. n°4, 41, 51-56 (1980). 
  16. [16] J. Maurer and A. Libchaber: Rayleigh-Bénard experiment in liquid hélium; frequency locking and the onset of turbulence. J. de Physique Lettres, 40, L 419-423 (1979). 
  17. [17] Yu I. Neimark: On some cases of periodic motions depending on parameters. Dokl. Akad. Nauk. SSR, 129, 736-739 (1959). Zbl0089.29603MR132256
  18. [18] Y. Pomeau et P. Manneville: Intermittency and the Lorenz model. Physics letters, 75A, 1-2 (1979). Zbl0985.37503MR594556
  19. [19] D. Ruelle and F. Takens: On the nature of turbulence. Comm. Math. Phys.20, 167-192 (1971). Zbl0223.76041MR284067
  20. [20] R.J. Sacker: On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations. New York Univ. IMM-NYU, 333 (1964). 
  21. [21] D.G. Schaeffer: Qualitative analysis of a model for boundary effects in the Taylor problem. Preprint. Zbl0461.76016MR553586
  22. [22] Y.H. Wan: Bifurcation into invariant tori at points of resonance. Arch. Rat. Mech. Anal.68, 343-357 (1978). Zbl0399.58005MR511162

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.