Well-posedness and propagation of singularities for initial boundary value problem for second order hyperbolic equation with general boundary condition

G. Eskin

Séminaire Équations aux dérivées partielles (Polytechnique) (1979-1980)

  • page 1-14

How to cite

top

Eskin, G.. "Well-posedness and propagation of singularities for initial boundary value problem for second order hyperbolic equation with general boundary condition." Séminaire Équations aux dérivées partielles (Polytechnique) (1979-1980): 1-14. <http://eudml.org/doc/111760>.

@article{Eskin1979-1980,
author = {Eskin, G.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {eng},
pages = {1-14},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Well-posedness and propagation of singularities for initial boundary value problem for second order hyperbolic equation with general boundary condition},
url = {http://eudml.org/doc/111760},
year = {1979-1980},
}

TY - JOUR
AU - Eskin, G.
TI - Well-posedness and propagation of singularities for initial boundary value problem for second order hyperbolic equation with general boundary condition
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1979-1980
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 14
LA - eng
UR - http://eudml.org/doc/111760
ER -

References

top
  1. [1] R. Beals: Mixed boundary value problems for non strict hyperbolic equationsBull. AMS (1972) pp.520-521. Zbl0255.35062MR298225
  2. [2] J. Chazarain: Problèmes de Cauchy abstraits et application a quelques problèmes mixtes, J. Funct. Analysis v. 7. (1971), pp.386-446. Zbl0211.12902MR276830
  3. [3] G. Eskin: Parametrix and propagation of singularities for the interior mixed hyperbolic problem, Journ. d'Analyse Math. v. 32. (1977) pp.17-62. Zbl0375.35037MR477491
  4. [4] G. Eskin: Propagation of singularities for the interior mixed hyperbolic problem, Sem. Goulaouic-Schwartz1976-1977, exposé n° XII. Zbl0361.35042MR481566
  5. [5] L. Garding: Le problème de la dérivée oblique pour l'équation des ondes, C. R. Acad. Sc. Paris t.285, 1977, pp.773-775, ET C. R. Acad. Sc.Paris t.286 (1978 p.1199. Zbl0386.35024
  6. [6] I.M. Gelfand, G.E. Shilov: Generalized functions v.3, FizmatgizMoscow, 1958. Zbl0159.18301
  7. [7] M. Ikawa: Problèmes mixtes pour l'équation des ondes II, Pibl. R.I.M.S. Kyoto Univ. v. 13. n° 1 (1977), 61-106. Zbl0362.35054MR499747
  8. [8] M. Ikawa: On the mixed problems for the wave equation in an interior domain, Comm. in P. D. E.3(3), 249-295 (1978). Zbl0389.35028MR481557
  9. [9] M. Ikawa: Preprint (1979). 
  10. [10] R. Melrose, J. Sjostrand: Propagation of singularities near the boundary II (in preparation). Zbl0546.35083
  11. [11] S. Miyataké: A sharp form of the existence theorem for hyperbolic mixed problems of second order, J. Math. Kyoto Univ.17 (2), 1977, p.199-223. Zbl0374.35028MR492901
  12. [12] K. Kajitani: A necessary condition for the well-posed hyperbolic mixed problem with variable coefficients, J. Math. Kyoto University14 (1974), 231-242. Zbl0291.35058MR377294
  13. [13] L. Nirenberg: Lectures on Linear P. D. E., Regional conference series in Math., n° 17, Providence, R. I., 1973. Zbl0267.35001MR450755

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.