Méthodes numériques pour les équations de Navier-Stokes instationnaires des fluides visqueux incompressibles
Séminaire Équations aux dérivées partielles (Polytechnique) (1981-1982)
- page 1-28
Access Full Article
topHow to cite
topGlowinski, R.. "Méthodes numériques pour les équations de Navier-Stokes instationnaires des fluides visqueux incompressibles." Séminaire Équations aux dérivées partielles (Polytechnique) (1981-1982): 1-28. <http://eudml.org/doc/111800>.
@article{Glowinski1981-1982,
author = {Glowinski, R.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {quadratic triangular finite elements; alternating direction techniques; splitting; ADI methods; nonlinear steps; linear steps; flow velocity components; variational principle; fast elliptic solver; artificial compressibility; fast conjugate gradient techniques; steady flow in channel with step at Reynolds number 191; unsteady flow around and inside a nozzle at high incidence for Reynolds number 100},
language = {eng},
pages = {1-28},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Méthodes numériques pour les équations de Navier-Stokes instationnaires des fluides visqueux incompressibles},
url = {http://eudml.org/doc/111800},
year = {1981-1982},
}
TY - JOUR
AU - Glowinski, R.
TI - Méthodes numériques pour les équations de Navier-Stokes instationnaires des fluides visqueux incompressibles
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1981-1982
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 28
LA - eng
KW - quadratic triangular finite elements; alternating direction techniques; splitting; ADI methods; nonlinear steps; linear steps; flow velocity components; variational principle; fast elliptic solver; artificial compressibility; fast conjugate gradient techniques; steady flow in channel with step at Reynolds number 191; unsteady flow around and inside a nozzle at high incidence for Reynolds number 100
UR - http://eudml.org/doc/111800
ER -
References
top- [1] Bristeau M.O., Glowinski R., Periaux J., Perrier P., Pironneau O., Poirier G., Application of Optimal control and finite element methods to the calculation of transonic flows and incompressible viscous flows, in Numerical Methods in Applied Fluid Dynamics, B. Hunt Ed., Academic Press, London, 1980, 203-312. Zbl0449.76002MR657398
- [2] Bristeau M.O., Glowinski R., Mantel B., Periaux J., Perrier P., Pironneau O., A finite element approximation of Navier-Stokes equations for incompressible viscous fluids. Iterative methods of solution, in Approximation Methods for Navier-Stokes problems, R. Rautmann Ed., Lecture Notes in Mathematics, Vol. 771, Springer-Verlag, Berlin, 1980, 78-128. Zbl0426.65064MR565992
- [3] Glowinski R., Numerical Methods for Nonlinear Variational Problems, 2nd Edition (to appear). Zbl0536.65054MR737005
- [4] Benque J.P., Ibler B., Keramsi A., Labadie G., A finite element method for Navier-Stokes equations, in Proceedings of Third International Conference on Finite Element in Flow Problems, Banff, Alberta, Canada, 10-13 June, 1980, 110-120. Zbl0457.76023
- [5] Ibler B., Résolution des équations de Navier-Stokes par une méthode d'éléments finis. Thèse de 3ème cycle, Université Paris-Sud, 1981. Zbl0517.76036
- [6] Adams R.A., Sobolev spaces, Academic Press, New-York, 1975. Zbl0314.46030MR450957
- [7] Necas J., Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967. MR227584
- [8] Oden J.T., Reddy J.N., An introduction to the mathematical theory of finite elements, J. Wiley and Sons, New-York, 1976. Zbl0336.35001MR461950
- [9] Polak E., Computational Methods in Optimization, Academic Press, New-York, 1971. MR282511
- [10] Taylor C., Hood P., A Numerical solution of the Navier-Stokes Equations using the Finite Element Technique, Computers and Fluids, 1, pp. 73-100, (1973). Zbl0328.76020MR339677
- [11] Girault V., Raviart P.A., Finite Element Approximation of Navier-Stokes equations, Lecture Notes in Math., Vol. 749, Springer-Verlag, Berlin, 1979. Zbl0413.65081MR548867
- [12] Temam R., Navier-Stokes equations, North-Holland, Amsterdam, 1977. Zbl0383.35057
- [13] Hutton A.G., A général finite element method for vorticity and stream function applied to a laminar separated flow, Central Electricity Generating Board Report, Research Dept. Berkeley Nuclear Laboratories, August 1975.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.