Théorie de la Γ -convergence. Applications à des inéquations variationnelles de la mécanique

H. Attouch

Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983)

  • page 1-25

How to cite


Attouch, H.. "Théorie de la $\Gamma $-convergence. Applications à des inéquations variationnelles de la mécanique." Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983): 1-25. <>.

author = {Attouch, H.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
language = {fre},
pages = {1-25},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Théorie de la $\Gamma $-convergence. Applications à des inéquations variationnelles de la mécanique},
url = {},
year = {1982-1983},

AU - Attouch, H.
TI - Théorie de la $\Gamma $-convergence. Applications à des inéquations variationnelles de la mécanique
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1982-1983
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 25
LA - fre
UR -
ER -


  1. [1] H. Attouch: "Sur la Γ -convergence". Research notes in Mathematics (Pitman) n° 53, H. Brezis and J. L. Lions editors. Séminaire Collège de France (1980). 
  2. [2] H. Attouch: "Introduction à l'homogénéisation d'inéquations variationnelles." Rend. Sem. Mat. Univ. Politecn. Torino, Vol. 40, 2, (1981). Zbl0523.35004MR724197
  3. [3] H. Attouch: "Variational convergences for functions and operators." (à paraître) Research Notes in Mathematics (Pitman editor). Zbl0561.49012
  4. [4] H. Attouch & C. Picard: "Variational inequalities with varying obstacles general form of the limit problem." Journal of Functional Analysis, Vol. 50, n°3, (1983). MR695419
  5. [5] H. Attouch & R. Wets: "Approximation and convergence in nonlinear optimization". Nonlinear Programming 4, edited by L. Mangasarian, R. R. Mayer, S. Robinson. Academic Press1981. MR663386
  6. [6] Bensoussan & J.L. Lions & Papanicolaou: Asymptotic analysis for periodic structures. North Holland (1978). Zbl0404.35001MR503330
  7. [7] L. Carbone & C. Sbordone: Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl.122 (1979) 1-60. Zbl0474.49016
  8. [8] D. Cioranescu & F. Murat: "Un terme étrange..." Séminaire Collège de France (H. Brézis & J. L. Lions editors) Research Notes in Mathematics n° 60, Pitman1982. Zbl0496.35030
  9. [9] G. Dal Maso & P. Longo: Γ-limits of obstacles. Ann. Mat. Pura Appl.128 (1981) 1-50. Zbl0467.49004
  10. [10] E. De Giorgi: "Convergence problems..." Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis, Rome, Pitagore Editrice, Bologna, 1978. 
  11. [11] E. De Giorgi & T. Franzoni: Su un tipo di convergenza variationale, Atti Acc. Naz. Lincei (8), 58 (1975), 842-850. Zbl0339.49005MR448194
  12. [12] V.A. Marchenco & E.A. Hrouslov: "Problèmes aux limites dans des domaines à frontière finement granulée." Kiev, 1974, (in Russian). 
  13. [13] U. Mosco: Convergence of convex sets and of solutions of variational inequalities.Advanced Mathematics, 3, (1969), 510-585. Zbl0192.49101MR298508
  14. [14] F. Murat: Compacité par compensation. Ann. Sc. Norm. Pisa (4) 5 (1978) 484-507. Zbl0399.46022MR506997
  15. [15] J. Rauch & M. Taylor: Potential scattering theory on widly perturbed domains. J. Funct. Analysis18 (1975) 27-59. Zbl0293.35056MR377303
  16. [16] E. Sanchez-Palencia: "Nonhomogenous média..." Lecture Notes in Physics. Springer, 127, (1980) . Zbl0432.70002MR578345
  17. [17] L. Tartar: Cours Peccot, Collège de France (1977). 
  18. [18] R. Wets: "Convergence of convex functions, variational inequalities,...", in Variational inequalities and complementary problems. Editors R. Cottle, F. Gianessi & J. L. Lions, Chichester, Wiley & Sons, 1980, 375-403. Zbl0481.90066MR578760

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.