The Dirichlet problem for the biharmonic equation in a Lipschitz domain

Carlos E. Kenig

Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985)

  • page 1-6

How to cite

top

Kenig, Carlos E.. "The Dirichlet problem for the biharmonic equation in a Lipschitz domain." Séminaire Équations aux dérivées partielles (Polytechnique) (1984-1985): 1-6. <http://eudml.org/doc/111871>.

@article{Kenig1984-1985,
author = {Kenig, Carlos E.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Dirichlet problem; biharmonic equation; Lipschitz domain; existence; uniqueness},
language = {eng},
pages = {1-6},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {The Dirichlet problem for the biharmonic equation in a Lipschitz domain},
url = {http://eudml.org/doc/111871},
year = {1984-1985},
}

TY - JOUR
AU - Kenig, Carlos E.
TI - The Dirichlet problem for the biharmonic equation in a Lipschitz domain
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1984-1985
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 6
LA - eng
KW - Dirichlet problem; biharmonic equation; Lipschitz domain; existence; uniqueness
UR - http://eudml.org/doc/111871
ER -

References

top
  1. [1] J. Cohen and J. Gosselin: The Dirichlet problem for the biharmonic equation in a Cl domain in the plane, Indiana U. Math.J. Vol.32, 5 (1983), 635-685. Zbl0534.31003MR711860
  2. [2] R. Coifman, A. McIntosh and Y. Meyer: L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes, Annals of Math.116 (1982), 361-387. Zbl0497.42012MR672839
  3. [3] R. Coifman and Y. Meyer: Au delà des opérateurs pseudodifférentiels, Astérisque57, (1978). Zbl0483.35082MR518170
  4. [4] B. Dahlberg: On estimates for harmonie measure, Arch. for Rational Mech. and Anal.65 (1977), 272-288. Zbl0406.28009MR466593
  5. [5] B. Dahlberg: On the Poisson integral for Lipschitz and Cl domains, Studia Math.66 (1979), 13-24. Zbl0422.31008MR562447
  6. [6] B. Dahlberg: Weighted norm inequalities for the Lusin area integral and the non-tangentiel maximal functions for functions harmonie in a Lipschitz domain, Studia Math.67 (1980), 297-314. Zbl0449.31002MR592391
  7. [7] B. Dahlberg and C. Kenig: Hardy spaces and the LP-Neumann problem for Laplace's equation in a Lipschitz domain, preprint. 
  8. [8] B. Dahlberg and C. Kenig: Area integral estimates for higher order boundary value problems on Lipschitz domains, in preparation. 
  9. [9] B. Dahlberg, C. Kenig and G. Verchota: The Dirichlet problem for the biharmonic equation in a Lipschitz domain, preprint. Zbl0589.35040
  10. [10] D. Jerison and C. Kenig: The Dirichlet problem in non-smooth domains, Annals of Math.113 (1981), 367-382. Zbl0434.35027MR607897
  11. [11] D. Jerison and C. Kenig: The Neumann problem on Lipschitz domains, Bull. A.M.S. Vol. 4 (1981), 203-207. Zbl0471.35026MR598688
  12. [12] E. Stein and G. Weiss: On the theory of harmonie functions of several variables I, Acta Math.103 (1960), 25-62. Zbl0097.28501MR121579
  13. [13] G. Verchota: Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains, to appear J. of functional Analysis. 
  14. [14] G. Verchota: The Dirichlet problem for biharmonic functions in Cl domains, preprint. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.